来源:http://www.dataguru.cn/article-794-1.html

rugarch包是R中用来拟合和检验garch模型的一个包。该包最早在http://rgarch.r-forge.r-project.org上发布,现已发布到CRAN上。简单而言,该包主要包括四个功能:

  • 拟合garch族模型
  • garch族模型诊断
  • garch族模型预测
  • 模拟garch序列
  • 拟合序列分布

下面分别说一下。

一、拟合garch族模型

拟合garch族模型分三个步骤:
(1)通过ugarchspec函数设定模型形式
(2)通过ugarchfit函数拟合模型

设定模型形式

一个典型的garch(p,q)模型如下:

 

该模型由三个部分构成,均值方程对应式(1),分布假设对应(2),方差方程对应式(3),对三个部分进行适当的变形后可以形成egarch模型,egarch-ged模型,egarch-t模型,Igarch模型,garch-m模型和Qgarch模型等。因此,设定模型形式就是分别设定均值方程、方差方程和分布。

rugarch包的优越之处正在于这里。ugarchspec函数的参数也被分解为为三个主要部分,分别是variance.model,对应式(3),mean.model,对应式(1),distribution.model对应式(2)中的$\epsilon$。用户通过对三个部分的参数的分别设定从而构造出自己想用的模型。

举个例子:

variance.model = list(model = "sGARCH", garchOrder = c(1, 1),submodel = NULL, external.regressors = NULL, variance.targeting = FALSE),

表示拟合的方差模型为sGARCH,方差模型的自回归阶数是(1,1),方差模型中未引入外生变量。

mean.model = list(armaOrder = c(1, 1), include.mean = TRUE, archm = FALSE, archpow = 1, arfima = FALSE, external.regressors = NULL, archex = FALSE)

表示均值方程为arma(1,1)模型,方程自变量中包含均值,未引入外生变量。

distribution.model = "norm"

表示模型分布假设为正态分布。
将三个部分装入ugarchspec的参数中就可以完成一个sgarch(1,1)-norm模型的模型设定。

myspec=ugarchspec(

variance.model =
list(model = "sGARCH", garchOrder = c(1, 1), submodel = NULL,
external.regressors = NULL, variance.targeting = FALSE),

mean.model =
list(armaOrder = c(1, 1), include.mean = TRUE, archm = FALSE, archpow =
1, arfima = FALSE, external.regressors = NULL, archex = FALSE),

distribution.model = "norm"

)

拟合模型

拟合模型的函数是ugarchfit。ugarchfit的参数如下:

ugarchfit(spec, data, out.sample = 0, solver = "solnp", solver.control = list(),fit.control = list(stationarity = 1, fixed.se = 0, scale = 0), ...)

其中,spec为ugarchspec函数的结果,data为数据对象。solver为优化算法。solver.control设定优化参数,fit.control设定拟合参数。
接上面的例子:

myfit=ugarchfit(myspec,data=sp500ret,solver="solnp")

到这里一个garch模型就完成了。

查看结果

键入下列代码查看模型的拟合结果:

提取模型结果

rugarch包中模型结果的提取要依靠as.data.frame函数。比如提取模型的拟合值

as.data.frame(myfit,which="fitted")

提取残差序列:

as.data.frame(myfit,which=" residuals")

提取方差序列:

as.data.frame(myfit,which="sigma")

当然,也可以同时查看所有:

as.data.frame(myfit,which=all)

或者

as.data.frame(myfit)

两个语句等价。

二、模型诊断

通过plot(myfit)可以对模型结果进行图形诊断:

> plot(myfit)
Make a plot selection (or 0 to exit):
1: Series with 2 Conditional SD Superimposed
2: Series with 2.5% VaR Limits (with unconditional mean)
3: Conditional SD
4: ACF of Observations
5: ACF of Squared Observations
6: ACF of Absolute Observations
7: Cross Correlation
8: Empirical Density of Standardized Residuals
9: QQ-Plot of Standardized Residuals10: ACF of Standardized Residuals11: ACF of Squared Standardized Residuals12: News-Impact CurveSelection: 1

三、模型预测

如果模型通过检验,可以用ugarchforcast函数对未来进行预测:

可以用fpm或者plot来查看模型的预测结果。比如:

> plot(fore)
Make a plot selection (or 0 to exit):
1: Time Series Prediction (unconditional)
2: Time Series Prediction (rolling)
3: Conditional SD PredictionSelection: 1

rugarch包与R语言中的garch族模型的更多相关文章

  1. 掌握R语言中的apply函数族(转)

    转自:http://blog.fens.me/r-apply/ 前言 刚开始接触R语言时,会听到各种的R语言使用技巧,其中最重要的一条就是不要用循环,效率特别低,要用向量计算代替循环计算. 那么,这是 ...

  2. R语言中apply函数

    前言 刚开始接触R语言时,会听到各种的R语言使用技巧,其中最重要的一条就是不要用循环,效率特别低,要用向量计算代替循环计算. 那么,这是为什么呢?原因在于R的循环操作for和while,都是基于R语言 ...

  3. R语言中的MySQL操作

    R语言中,针对MySQL数据库的操作执行其实也有很多中方式.本人觉得,熟练掌握一种便可,下面主要就个人的学习使用情况,总结其中一种情况-----使用RMySQL操作数据库. 1.下载DBI和RMySQ ...

  4. R语言中的factor

    对于初学者来说,R语言中的factor有些难以理解.如果直译factor为“因子”,使得其更加难以理解.我倾向于不要翻译,就称其为factor,然后从几个例子中理解: <span style=& ...

  5. R语言中Fisher判别的使用方法

    最近编写了Fisher判别的相关代码时,需要与已有软件比照结果以确定自己代码的正确性,于是找到了安装方便且免费的R.这里把R中进行Fisher判别的方法记录下来. 1. 判别分析与Fisher判别 不 ...

  6. R语言中的Apriori关联规则的使用

    1.下载Matrix和arules包 install.packages(c("Matrix","arules")) 2.载入引入Matrix和arules包 # ...

  7. R 语言中 data table 的相关,内存高效的 增量式 data frame

    面对的是这样一个问题,不断读入一行一行数据,append到data frame上,如果用dataframe,  rbind() ,可以发现数据大的时候效率明显变低. 原因是 每次bind 都是一次重新 ...

  8. R语言中 fitted()和predict()的区别

    fitted是拟合值,predict是预测值.模型是基于给定样本的值建立的,在这些给定样本上做预测就是拟合.在新样本上做预测就是预测. 你可以找一组数据试试,结果如何. fit<-lm(weig ...

  9. 关于R语言中set.seed()

    在r中取sample时候,经常会有set.seed(某数),经常看见取值很大,其实这里无论括号里取值是多少,想要上下两次取值一样,都需要在每次取值前输入同样的set.seed(某数),才能保证两次取值 ...

随机推荐

  1. 印象笔记·剪藏 Chrome插件

    印象笔记·剪藏 Chrome插件 链接:https://pan.baidu.com/s/10nzrSk_3sLkOI29MIEPEBw  密码:p8n8

  2. 【miscellaneous】【ARM-Linux开发】ARM平台基于嵌入式Linux Gstreamer 使用

    1). 简介 随着ARM平台性能的日益强大和嵌入式设备的发展,对于多媒体处理如音视频播放,摄像头,流媒体处理等需求也日益增多,本文就通过几个基于嵌入式Linux下多媒体应用的示例来简单展示下使用Gst ...

  3. easyui中 datagrid与pagination结合使用【记录】

    /** * Js名称:客源基本管理 * */ var setPageNumber = 1; var setPageSize = 10; var guestManageListData = {}; // ...

  4. [翻译向] 当flush privileges生效时

    #前言: 最近频繁在mysql权限控制这里栽跟斗,在翻阅了一些资料之后,简单地翻译一下官网关于flush privileges的描述,抛砖引玉.   #翻译正文: If the mysqld serv ...

  5. Java 文件下载工具类

    Java 文件下载工具类 import org.slf4j.Logger; import org.slf4j.LoggerFactory; private static Logger logger = ...

  6. vmstat命令详解--转载

    一.前言 vmstat命令:  用来获得有关进程.虚存.页面交换空间及 CPU活动的信息.这些信息反映了系统的负载情况 二.虚拟内存运行原理 在系统中运行的每个进程都需要使用到内存,但不是每个进程都需 ...

  7. vue.js移动端app:初始配置

    本系列将会用vue.js2制作一个移动端的webapp单页面,页面不多,大概在7,8个左右,不过麻雀虽小,五脏俱全,常用的效果如轮播图,下拉刷新,上拉加载,图片懒加载都会用到.css方面也会有一些描述 ...

  8. JS 03事件

    <script type="text/javascript"> function getUserInput() { //获取用户输入的内容 var val = docu ...

  9. (一)第一个python语句、乘除法、获取用户输入、函数

    一.print语句 >>> print "hello World!!" python2 和python3 的print是不一样的,python3的print(“h ...

  10. (八)springmvc之静态资源的访问。

    一.直接调用 行内样式或者js直接调用没有问题. <span style="font-size:26px;color: Blue">行内样式</span> ...