步骤:

1.  \dot x =A*x + B*u is a state space model, with A and B are known. Now we want to locate the poles p at the desired location, so need the help with designing a controller: u= - k*x。How to choose the gain k?

Answer: Substituting u= - k*x, then \dot = (A-B*K)x, use place function in Matlab to input (A,B,p), obtaining k from the output.

About the introduction of place function, I attach a paragraph from Wikipedia here:

Description

Given the single- or multi-input system

˙x=Ax+Bu

and a vector p of desired self-conjugate closed-loop pole locations, place computes a gain matrix K such that the state feedback u = –Kx places the closed-loop poles at the locations p. In other words, the eigenvalues of A – BK match the entries of p (up to the ordering).

K = place(A,B,p) places the desired closed-loop poles p by computing a state-feedback gain matrix K. All the inputs of the plant are assumed to be control inputs. The length of p must match the row size of Aplace works for multi-input systems and is based on the algorithm from [1]. This algorithm uses the extra degrees of freedom to find a solution that minimizes the sensitivity of the closed-loop poles to perturbations in A or B.

[K,prec,message] = place(A,B,p) returns prec, an estimate of how closely the eigenvalues of A – BK match the specified locations p (prec measures the number of accurate decimal digits in the actual closed-loop poles). If some nonzero closed-loop pole is more than 10% off from the desired location, message contains a warning message.

You can also use place for estimator gain selection by transposing the A matrix and substituting C' for B.

l = place(A',C',p).'

Examples

Pole Placement Design

Consider a state-space system (a,b,c,d) with two inputs, three outputs, and three states. You can compute the feedback gain matrix needed to place the closed-loop poles at p = [-1 -1.23 -5.0] by

p = [-1 -1.23 -5.0];
K = place(a,b,p)
2. How to design the desired poles? Answer: Choose a suitable value of \omega (bandwith) and \zeta (damping) of the controlling system:

Then use the roots function to input the \omega and \zeta, obtaining the roots (the poles)  as the output.

About the introduction of roots function, I attach a paragraph from Wikipedia here:

The roots function calculates the roots of a single-variable polynomial represented by a vector of coefficients.

For example, create a vector to represent the polynomial x2−x−6, then calculate the roots.

p = [1 -1 -6];
r = roots(p)
r =

     3
    -2

Then with poles and system matrix (A, B), we can calculate the gain k.  


 

怎样求控制器的增益系数k?的更多相关文章

  1. ACM1229_还是A+B(求A的第K位的数公式:A%((int)(pow(10,K)))

    #include<stdio.h> #include<math.h> int main() { int A,k,B,sum,c,d; while(scanf("%d% ...

  2. POJ1741--Tree (树的点分治) 求树上距离小于等于k的点对数

    Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 12276   Accepted: 3886 Description ...

  3. 谷歌面试题:输入是两个整数数组,他们任意两个数的和又可以组成一个数组,求这个和中前k个数怎么做?

    谷歌面试题:输入是两个整数数组,他们任意两个数的和又可以组成一个数组,求这个和中前k个数怎么做? 分析: "假设两个整数数组为A和B,各有N个元素,任意两个数的和组成的数组C有N^2个元素. ...

  4. hdu 1588 求f(b) +f(k+b) +f(2k+b) +f((n-1)k +b) 之和 (矩阵快速幂)

    g(i)=k*i+b; 0<=i<nf(0)=0f(1)=1f(n)=f(n-1)+f(n-2) (n>=2)求f(b) +f(k+b) +f(2*k+b) +f((n-1)*k + ...

  5. poj 3261 求可重叠的k次最长重复子串

    题意:求可重叠的k次最长重复子串的长度 链接:点我 和poj1743差不多 #include<cstdio> #include<iostream> #include<al ...

  6. 求数列中第K大的数

    原创 利用到快速排序的思想,快速排序思想:https://www.cnblogs.com/chiweiming/p/9188984.html array代表存放数列的数组,K代表第K大的数,mid代表 ...

  7. 求给出第 K个 N位二进制数,该二进制数不得有相邻的“1”

    求给出第 K (0 < K < 109) 个 N (0 < N < 44) 位二进制数,该二进制数不得有相邻的"1". 这道题要求给出第 K (0 < ...

  8. POJ - 3415 Common Substrings(后缀数组求长度不小于 k 的公共子串的个数+单调栈优化)

    Description A substring of a string T is defined as: T( i, k)= TiTi+1... Ti+k-1, 1≤ i≤ i+k-1≤| T|. G ...

  9. 快速求1~n的k!,k的逆元

    1.求1~n的k! 2.求inv(k!) 3.inv((k-1)!)=inv(k!)*k%mod 4.inv(k)=inv(k!)*((k-1)!)%mod 如 https://www.cnblogs ...

随机推荐

  1. NSIS逻辑函数头文件介绍

    !include "LogicLib.nsh"使用 NSIS 的宏来提供各种逻辑基本语句,不需要预先添加函数. 基本语句 If|Unless..{ElseIf|ElseUnless ...

  2. HBASE学习笔记(五)

    一.HBase的RowKey设计原则 1.我们知道HBase是三维有序存储的,通过RowKey(行键),ColumnKey(Column family和qualifier)和TimeStamp(时间戳 ...

  3. git clone ssh 时出现 fatal: Could not read from remote repository

    一.问题及解决办法参考: 在 ubuntu 中,要把 GitHub 上的储存库克隆到计算机上时,执行如下命令: git clone git@github.com:USER-NAME/REPOSITOR ...

  4. 快速写个node命令行工具

    1.package.json-bin配置 [创建bat文件,把bat路径添加到PATH中]这些固定的工作可以由npm帮我们完成.package.json中有个bin字段配置: bin: { " ...

  5. vue项目默认IE以最高级别打开

    只需要在index.html加入 <meta http-equiv="X-UA-Compatible" content="IE=Edge">

  6. Dockerfile初体验

    Dockerfile构建nginx 创建一个文件夹 mkdir -p /nginx 进入创建的目录 cd /nginx 创建并编辑 添加下面两行 vim Dockerfile 行1,去本地找基础的镜像 ...

  7. springboot中使用filter用配置类方式

    在03-springboot-web的Filter包下,创建HeFilter类 代码示例: package com.bjpowernode.springboot.filter; import java ...

  8. sql 脚本过大

    先把sql脚本文件中的创建部分  剪切 出来执行,创建一个数据库 然后执行cmd命令 sqlcmd   -S    CAOHONGWEI   -U   sa   -P   p@ss!123   -d  ...

  9. 严格次小生成树[BJWC2010]

    原文必点 原题链接 题目描述 给定一张\(N\) 个点$ M $条边的无向图,求无向图的严格次小生成树. 设最小生成树的边权之和为\(sum\),严格次小生成树就是指边权之和大于\(sum\)的生成树 ...

  10. html标签被div嵌套页面字体变大的解决办法

    html标签被div嵌套页面字体变大的解决办法 <div> <html> <head> <title></title> </head& ...