步骤:

1.  \dot x =A*x + B*u is a state space model, with A and B are known. Now we want to locate the poles p at the desired location, so need the help with designing a controller: u= - k*x。How to choose the gain k?

Answer: Substituting u= - k*x, then \dot = (A-B*K)x, use place function in Matlab to input (A,B,p), obtaining k from the output.

About the introduction of place function, I attach a paragraph from Wikipedia here:

Description

Given the single- or multi-input system

˙x=Ax+Bu

and a vector p of desired self-conjugate closed-loop pole locations, place computes a gain matrix K such that the state feedback u = –Kx places the closed-loop poles at the locations p. In other words, the eigenvalues of A – BK match the entries of p (up to the ordering).

K = place(A,B,p) places the desired closed-loop poles p by computing a state-feedback gain matrix K. All the inputs of the plant are assumed to be control inputs. The length of p must match the row size of Aplace works for multi-input systems and is based on the algorithm from [1]. This algorithm uses the extra degrees of freedom to find a solution that minimizes the sensitivity of the closed-loop poles to perturbations in A or B.

[K,prec,message] = place(A,B,p) returns prec, an estimate of how closely the eigenvalues of A – BK match the specified locations p (prec measures the number of accurate decimal digits in the actual closed-loop poles). If some nonzero closed-loop pole is more than 10% off from the desired location, message contains a warning message.

You can also use place for estimator gain selection by transposing the A matrix and substituting C' for B.

l = place(A',C',p).'

Examples

Pole Placement Design

Consider a state-space system (a,b,c,d) with two inputs, three outputs, and three states. You can compute the feedback gain matrix needed to place the closed-loop poles at p = [-1 -1.23 -5.0] by

p = [-1 -1.23 -5.0];
K = place(a,b,p)
2. How to design the desired poles? Answer: Choose a suitable value of \omega (bandwith) and \zeta (damping) of the controlling system:

Then use the roots function to input the \omega and \zeta, obtaining the roots (the poles)  as the output.

About the introduction of roots function, I attach a paragraph from Wikipedia here:

The roots function calculates the roots of a single-variable polynomial represented by a vector of coefficients.

For example, create a vector to represent the polynomial x2−x−6, then calculate the roots.

p = [1 -1 -6];
r = roots(p)
r =

     3
    -2

Then with poles and system matrix (A, B), we can calculate the gain k.  


 

怎样求控制器的增益系数k?的更多相关文章

  1. ACM1229_还是A+B(求A的第K位的数公式:A%((int)(pow(10,K)))

    #include<stdio.h> #include<math.h> int main() { int A,k,B,sum,c,d; while(scanf("%d% ...

  2. POJ1741--Tree (树的点分治) 求树上距离小于等于k的点对数

    Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 12276   Accepted: 3886 Description ...

  3. 谷歌面试题:输入是两个整数数组,他们任意两个数的和又可以组成一个数组,求这个和中前k个数怎么做?

    谷歌面试题:输入是两个整数数组,他们任意两个数的和又可以组成一个数组,求这个和中前k个数怎么做? 分析: "假设两个整数数组为A和B,各有N个元素,任意两个数的和组成的数组C有N^2个元素. ...

  4. hdu 1588 求f(b) +f(k+b) +f(2k+b) +f((n-1)k +b) 之和 (矩阵快速幂)

    g(i)=k*i+b; 0<=i<nf(0)=0f(1)=1f(n)=f(n-1)+f(n-2) (n>=2)求f(b) +f(k+b) +f(2*k+b) +f((n-1)*k + ...

  5. poj 3261 求可重叠的k次最长重复子串

    题意:求可重叠的k次最长重复子串的长度 链接:点我 和poj1743差不多 #include<cstdio> #include<iostream> #include<al ...

  6. 求数列中第K大的数

    原创 利用到快速排序的思想,快速排序思想:https://www.cnblogs.com/chiweiming/p/9188984.html array代表存放数列的数组,K代表第K大的数,mid代表 ...

  7. 求给出第 K个 N位二进制数,该二进制数不得有相邻的“1”

    求给出第 K (0 < K < 109) 个 N (0 < N < 44) 位二进制数,该二进制数不得有相邻的"1". 这道题要求给出第 K (0 < ...

  8. POJ - 3415 Common Substrings(后缀数组求长度不小于 k 的公共子串的个数+单调栈优化)

    Description A substring of a string T is defined as: T( i, k)= TiTi+1... Ti+k-1, 1≤ i≤ i+k-1≤| T|. G ...

  9. 快速求1~n的k!,k的逆元

    1.求1~n的k! 2.求inv(k!) 3.inv((k-1)!)=inv(k!)*k%mod 4.inv(k)=inv(k!)*((k-1)!)%mod 如 https://www.cnblogs ...

随机推荐

  1. CentOS/RHEL 安装EPEL第三方软件源

    EPEL源简介 EPEL(Extra Packages for Enterprise Linux) 是由 FedORA 社区打造,为 RHEL 及衍生发行版如 CentOS等提供高质量软件包的项目.装 ...

  2. BZOJ2456-mode题解--一道有趣题

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2456 瞎扯 这是今天考的模拟赛T2交互题的一个30分部分分,老师在讲题时提到了这题.考 ...

  3. shiro学习(四、shiro集成spring+springmvc)

    依赖:spring-context,spring-MVC,shiro-core,shiro-spring,shiro-web 实话实说:web.xml,spring,springmvc配置文件好难 大 ...

  4. LeetCode:620.有趣的电影

    题目链接:https://leetcode-cn.com/problems/not-boring-movies/ 题目 某城市开了一家新的电影院,吸引了很多人过来看电影.该电影院特别注意用户体验,专门 ...

  5. element-ui Cascader 级联选择器 点击label选中

    通过修改label的样式解决: 注意:el-cascader-panel 是直接挂载在body上的,所以需要全局设置 .el-cascader-panel .el-radio{ width: 100% ...

  6. flex整页布局

    使用flex进行整页的三列布局,flex:1下的子元素无法铺满父级.给flex:1元素,添加stretch拉伸 display: flex; align-content: stretch; align ...

  7. 深入学习Mybatis框架(二)- 进阶

    1.动态SQL 1.1 什么是动态SQL? 动态SQL就是通过传入的参数不一样,可以组成不同结构的SQL语句. 这种可以根据参数的条件而改变SQL结构的SQL语句,我们称为动态SQL语句.使用动态SQ ...

  8. Intellij IDEA导入java项目看不到左边的项目目录结构

    1 重新import项目 然后导入完成,就可以了,再不行的话,删除.idea文件,重新import整个Project

  9. Linux下kafka集群搭建

    环境准备 zookeeper集群环境 kafka是依赖于zookeeper注册中心的一款分布式消息对列,所以需要有zookeeper单机或者集群环境. 三台服务器: 172.16.18.198 k8s ...

  10. 基础简单DP

    状态比较容易表示,转移方程比较好想,问题比较基本常见   递推.背包.LIS(最长递增序列),LCS(最长公共子序列) HDU 2048 数塔 由上往下推 状态数太多(100!) 可以由下往上推: d ...