步骤:

1.  \dot x =A*x + B*u is a state space model, with A and B are known. Now we want to locate the poles p at the desired location, so need the help with designing a controller: u= - k*x。How to choose the gain k?

Answer: Substituting u= - k*x, then \dot = (A-B*K)x, use place function in Matlab to input (A,B,p), obtaining k from the output.

About the introduction of place function, I attach a paragraph from Wikipedia here:

Description

Given the single- or multi-input system

˙x=Ax+Bu

and a vector p of desired self-conjugate closed-loop pole locations, place computes a gain matrix K such that the state feedback u = –Kx places the closed-loop poles at the locations p. In other words, the eigenvalues of A – BK match the entries of p (up to the ordering).

K = place(A,B,p) places the desired closed-loop poles p by computing a state-feedback gain matrix K. All the inputs of the plant are assumed to be control inputs. The length of p must match the row size of Aplace works for multi-input systems and is based on the algorithm from [1]. This algorithm uses the extra degrees of freedom to find a solution that minimizes the sensitivity of the closed-loop poles to perturbations in A or B.

[K,prec,message] = place(A,B,p) returns prec, an estimate of how closely the eigenvalues of A – BK match the specified locations p (prec measures the number of accurate decimal digits in the actual closed-loop poles). If some nonzero closed-loop pole is more than 10% off from the desired location, message contains a warning message.

You can also use place for estimator gain selection by transposing the A matrix and substituting C' for B.

l = place(A',C',p).'

Examples

Pole Placement Design

Consider a state-space system (a,b,c,d) with two inputs, three outputs, and three states. You can compute the feedback gain matrix needed to place the closed-loop poles at p = [-1 -1.23 -5.0] by

p = [-1 -1.23 -5.0];
K = place(a,b,p)
2. How to design the desired poles? Answer: Choose a suitable value of \omega (bandwith) and \zeta (damping) of the controlling system:

Then use the roots function to input the \omega and \zeta, obtaining the roots (the poles)  as the output.

About the introduction of roots function, I attach a paragraph from Wikipedia here:

The roots function calculates the roots of a single-variable polynomial represented by a vector of coefficients.

For example, create a vector to represent the polynomial x2−x−6, then calculate the roots.

p = [1 -1 -6];
r = roots(p)
r =

     3
    -2

Then with poles and system matrix (A, B), we can calculate the gain k.  


 

怎样求控制器的增益系数k?的更多相关文章

  1. ACM1229_还是A+B(求A的第K位的数公式:A%((int)(pow(10,K)))

    #include<stdio.h> #include<math.h> int main() { int A,k,B,sum,c,d; while(scanf("%d% ...

  2. POJ1741--Tree (树的点分治) 求树上距离小于等于k的点对数

    Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 12276   Accepted: 3886 Description ...

  3. 谷歌面试题:输入是两个整数数组,他们任意两个数的和又可以组成一个数组,求这个和中前k个数怎么做?

    谷歌面试题:输入是两个整数数组,他们任意两个数的和又可以组成一个数组,求这个和中前k个数怎么做? 分析: "假设两个整数数组为A和B,各有N个元素,任意两个数的和组成的数组C有N^2个元素. ...

  4. hdu 1588 求f(b) +f(k+b) +f(2k+b) +f((n-1)k +b) 之和 (矩阵快速幂)

    g(i)=k*i+b; 0<=i<nf(0)=0f(1)=1f(n)=f(n-1)+f(n-2) (n>=2)求f(b) +f(k+b) +f(2*k+b) +f((n-1)*k + ...

  5. poj 3261 求可重叠的k次最长重复子串

    题意:求可重叠的k次最长重复子串的长度 链接:点我 和poj1743差不多 #include<cstdio> #include<iostream> #include<al ...

  6. 求数列中第K大的数

    原创 利用到快速排序的思想,快速排序思想:https://www.cnblogs.com/chiweiming/p/9188984.html array代表存放数列的数组,K代表第K大的数,mid代表 ...

  7. 求给出第 K个 N位二进制数,该二进制数不得有相邻的“1”

    求给出第 K (0 < K < 109) 个 N (0 < N < 44) 位二进制数,该二进制数不得有相邻的"1". 这道题要求给出第 K (0 < ...

  8. POJ - 3415 Common Substrings(后缀数组求长度不小于 k 的公共子串的个数+单调栈优化)

    Description A substring of a string T is defined as: T( i, k)= TiTi+1... Ti+k-1, 1≤ i≤ i+k-1≤| T|. G ...

  9. 快速求1~n的k!,k的逆元

    1.求1~n的k! 2.求inv(k!) 3.inv((k-1)!)=inv(k!)*k%mod 4.inv(k)=inv(k!)*((k-1)!)%mod 如 https://www.cnblogs ...

随机推荐

  1. c# winfrom 界面设计

    1.在用DotnetBar的RibbonControl时,界面最大化时,会把电脑桌面的任务栏遮盖住: 解决办法:在load事件中写入: , Screen.PrimaryScreen.WorkingAr ...

  2. shell、bash、terminal和kernel之间的关系

    shell.bash.terminal和kernel之间的关系 本文是<鸟哥的Linux私房菜>的学习笔记 什么是kernel kernel的中文是"操作系统核心",主 ...

  3. 装了vs2010 SP1后,开机速度慢

    只要到服务里把 Microsoft .NET Framework NGEN v4.0.30319_X86 这个改成手动停止 或 禁用就可以 对vs没有影响   PS:禁了这个服务,开发wcf 在调试的 ...

  4. input type 为 number 时去掉上下小箭头

    <input type="number" ...> <style> input::-webkit-outer-spin-button, input::-we ...

  5. C# 字符串拼接性能探索 c#中+、string.Concat、string.Format、StringBuilder.Append四种方式进行字符串拼接时的性能

    本文通过ANTS Memory Profiler工具探索c#中+.string.Concat.string.Format.StringBuilder.Append四种方式进行字符串拼接时的性能. 本文 ...

  6. Java注解【一、概述】

    前面几篇Java学习笔记都是半夜写的,比较伤身体,今天开始想调整生物钟,早上起来学2小时,看看能坚持多久 本周目标: 1.JavaJDBC使用 2.JavaWeb编程 3.Java框架基础(反射+注解 ...

  7. 小程序中使用components方法selectComponent遇到的坑 返回为null

    前言:哎呦气死了,小程序等着发布审核得时候 发现了一个bug,selectComponent获取不到组件了,返回值一直为null 原因居然是因为 wx:if  , 代码如下,无论if是true还是fa ...

  8. SQL语句复习【专题一】

    SQL语句复习[专题一] --创建用户 scott 并设置密码为 tiger create user scott identified by tiger --用户刚刚创建没有任何的权限,连登录的权限都 ...

  9. ISO/IEC 15444-12 MP4 封装格式标准摘录 5

    目录 Segments Segment Type Box Segment Index Box Subsegment Index Box Producer Reference Time Box Supp ...

  10. MFC的一些常用操作

    一.添加消息 MFC和win32不同的一点是MFC采用的是消息的映射机制,即每一个消息都和处理的函数做了映射,我们可以通过查找的方式来得到消息的对应的函数,当然MFC提供了一个非常简便的方法,我们通过 ...