步骤:

1.  \dot x =A*x + B*u is a state space model, with A and B are known. Now we want to locate the poles p at the desired location, so need the help with designing a controller: u= - k*x。How to choose the gain k?

Answer: Substituting u= - k*x, then \dot = (A-B*K)x, use place function in Matlab to input (A,B,p), obtaining k from the output.

About the introduction of place function, I attach a paragraph from Wikipedia here:

Description

Given the single- or multi-input system

˙x=Ax+Bu

and a vector p of desired self-conjugate closed-loop pole locations, place computes a gain matrix K such that the state feedback u = –Kx places the closed-loop poles at the locations p. In other words, the eigenvalues of A – BK match the entries of p (up to the ordering).

K = place(A,B,p) places the desired closed-loop poles p by computing a state-feedback gain matrix K. All the inputs of the plant are assumed to be control inputs. The length of p must match the row size of Aplace works for multi-input systems and is based on the algorithm from [1]. This algorithm uses the extra degrees of freedom to find a solution that minimizes the sensitivity of the closed-loop poles to perturbations in A or B.

[K,prec,message] = place(A,B,p) returns prec, an estimate of how closely the eigenvalues of A – BK match the specified locations p (prec measures the number of accurate decimal digits in the actual closed-loop poles). If some nonzero closed-loop pole is more than 10% off from the desired location, message contains a warning message.

You can also use place for estimator gain selection by transposing the A matrix and substituting C' for B.

l = place(A',C',p).'

Examples

Pole Placement Design

Consider a state-space system (a,b,c,d) with two inputs, three outputs, and three states. You can compute the feedback gain matrix needed to place the closed-loop poles at p = [-1 -1.23 -5.0] by

p = [-1 -1.23 -5.0];
K = place(a,b,p)
2. How to design the desired poles? Answer: Choose a suitable value of \omega (bandwith) and \zeta (damping) of the controlling system:

Then use the roots function to input the \omega and \zeta, obtaining the roots (the poles)  as the output.

About the introduction of roots function, I attach a paragraph from Wikipedia here:

The roots function calculates the roots of a single-variable polynomial represented by a vector of coefficients.

For example, create a vector to represent the polynomial x2−x−6, then calculate the roots.

p = [1 -1 -6];
r = roots(p)
r =

     3
    -2

Then with poles and system matrix (A, B), we can calculate the gain k.  


 

怎样求控制器的增益系数k?的更多相关文章

  1. ACM1229_还是A+B(求A的第K位的数公式:A%((int)(pow(10,K)))

    #include<stdio.h> #include<math.h> int main() { int A,k,B,sum,c,d; while(scanf("%d% ...

  2. POJ1741--Tree (树的点分治) 求树上距离小于等于k的点对数

    Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 12276   Accepted: 3886 Description ...

  3. 谷歌面试题:输入是两个整数数组,他们任意两个数的和又可以组成一个数组,求这个和中前k个数怎么做?

    谷歌面试题:输入是两个整数数组,他们任意两个数的和又可以组成一个数组,求这个和中前k个数怎么做? 分析: "假设两个整数数组为A和B,各有N个元素,任意两个数的和组成的数组C有N^2个元素. ...

  4. hdu 1588 求f(b) +f(k+b) +f(2k+b) +f((n-1)k +b) 之和 (矩阵快速幂)

    g(i)=k*i+b; 0<=i<nf(0)=0f(1)=1f(n)=f(n-1)+f(n-2) (n>=2)求f(b) +f(k+b) +f(2*k+b) +f((n-1)*k + ...

  5. poj 3261 求可重叠的k次最长重复子串

    题意:求可重叠的k次最长重复子串的长度 链接:点我 和poj1743差不多 #include<cstdio> #include<iostream> #include<al ...

  6. 求数列中第K大的数

    原创 利用到快速排序的思想,快速排序思想:https://www.cnblogs.com/chiweiming/p/9188984.html array代表存放数列的数组,K代表第K大的数,mid代表 ...

  7. 求给出第 K个 N位二进制数,该二进制数不得有相邻的“1”

    求给出第 K (0 < K < 109) 个 N (0 < N < 44) 位二进制数,该二进制数不得有相邻的"1". 这道题要求给出第 K (0 < ...

  8. POJ - 3415 Common Substrings(后缀数组求长度不小于 k 的公共子串的个数+单调栈优化)

    Description A substring of a string T is defined as: T( i, k)= TiTi+1... Ti+k-1, 1≤ i≤ i+k-1≤| T|. G ...

  9. 快速求1~n的k!,k的逆元

    1.求1~n的k! 2.求inv(k!) 3.inv((k-1)!)=inv(k!)*k%mod 4.inv(k)=inv(k!)*((k-1)!)%mod 如 https://www.cnblogs ...

随机推荐

  1. vi/vim 编辑、搜索、查找、定位

    介绍vi/vim 相关命令,主要涉及:编辑.搜索.查找.定位. 分为两个章节,即常用命令  及 键盘图 一.vi/vim常用命令 set nu 显示行号 gg 跳转到文件开头 / 向后搜索 ? 向前搜 ...

  2. 这周末又参加班里同学生日party,同学父母包场2小时花费大约1000美金左右。

    今天班上Claire的生日,邀请了几个小朋友去pump it up.特别特别开心,因为她父母选的时间特别好晚上6-8点小孩子玩疯了以后吃的特别多.

  3. hive用户自定义函数

    一.UDF 1.显示所有函数:show functions ; 2.显示指定函数的帮助:$hive>desc function current_database(); 3. 什么是 UDF? 当 ...

  4. vue的使用与安装 npm -v报错

    1.先将node从官方文档下载下来,然后进行安装. 安装成功后,在dos命令中node -v.npm -v来测试,如果成功就可以安装cnpm(国内淘宝镜像比较快).这里我遇到一个bug,npm -v压 ...

  5. JS的 delete操作符 删除对象属性

    JS如何删除对象中的某一属性 var obj={ name: 'zhagnsan', age: 19 } delete obj.name //true typeof obj.name //undefi ...

  6. javascript的隐式类型转换(使(a==1&&a==2&&a==3) 成立)

    一些团队规定禁用 == 运算符换用=== 严格相等.以工程标准衡量,== 带来的便利性抵不上其带来的成本,团队协作时候你看到别人代码中的 ==,有些时候需要判断清楚作者的代码意图是确实需要转型,还是无 ...

  7. Asp.Net Server.MapPath()用法

    做了一个上传文件的功能 本地测试没问题 部署到服务器之后 一直报错 由于 某些历史原因 看不到错误信息 最后发现是路径的问题 其实这么简单的问题 最早该想到的 ...... Server.MapPat ...

  8. ceres for Android 太慢的解决方法

    跨平台编译了ceres,结果在android平台上运行的太慢,优化一次要0.3秒左右,时不时要一两秒.这太扯了.没辙了,在google上瞎搜索,看到 Jacobian evaluation is ve ...

  9. deep_learning_Function_numpy_random.normal()

    numpy常用函数之random.normal函数 np.random.normal(loc=0.0, scale=1.0, size=None) 作用:   生成高斯分布的概率密度随机数 loc:f ...

  10. python面向编程: 常用模块补充与面向对象

    一.常用模块 1.模块 的用用法 模块的相互导入 绝对导入 从sys.path (项目根目录)开始的完整路径 相对导入 是指相对于当前正在执行的文件开始的路径 只能用于包内模块相互间导入 不能超过顶层 ...