(注:本文转载自阮一峰老师的博文,原文地址:http://www.ruanyifeng.com/blog/2013/03/cosine_similarity.html

今天,我们再来研究另一个相关的问题。有些时候,除了找到关键词,我们还希望找到与原文章相似的其他文章。比如,"Google新闻"在主新闻下方,还提供多条相似的新闻。

为了找出相似的文章,需要用到"余弦相似性"(cosine similiarity)。下面,我举一个例子来说明,什么是"余弦相似性"。

为了简单起见,我们先从句子着手。

  句子A:我喜欢看电视,不喜欢看电影。

  句子B:我不喜欢看电视,也不喜欢看电影。

请问怎样才能计算上面两句话的相似程度?

基本思路是:如果这两句话的用词越相似,它们的内容就应该越相似。因此,可以从词频入手,计算它们的相似程度。

第一步,分词。

  句子A:我/喜欢/看/电视,不/喜欢/看/电影。

  句子B:我/不/喜欢/看/电视,也/不/喜欢/看/电影。

第二步,列出所有的词。

  我,喜欢,看,电视,电影,不,也。

第三步,计算词频。

  句子A:我 1,喜欢 2,看 2,电视 1,电影 1,不 1,也 0。

  句子B:我 1,喜欢 2,看 2,电视 1,电影 1,不 2,也 1。

第四步,写出词频向量。

  句子A:[1, 2, 2, 1, 1, 1, 0]

  句子B:[1, 2, 2, 1, 1, 2, 1]

到这里,问题就变成了如何计算这两个向量的相似程度。

我们可以把它们想象成空间中的两条线段,都是从原点([0, 0, ...])出发,指向不同的方向。两条线段之间形成一个夹角,如果夹角为0度,意味着方向相同、线段重合;如果夹角为90度,意味着形成直角,方向完全不相似;如果夹角为180度,意味着方向正好相反。因此,我们可以通过夹角的大小,来判断向量的相似程度。夹角越小,就代表越相似。

以二维空间为例,上图的a和b是两个向量,我们要计算它们的夹角θ。余弦定理告诉我们,可以用下面的公式求得:

假定a向量是[x1, y1],b向量是[x2, y2],那么可以将余弦定理改写成下面的形式:

数学家已经证明,余弦的这种计算方法对n维向量也成立。假定A和B是两个n维向量,A是 [A1, A2, ..., An] ,B是 [B1, B2, ..., Bn] ,则A与B的夹角θ的余弦等于:

使用这个公式,我们就可以得到,句子A与句子B的夹角的余弦。

余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性"。所以,上面的句子A和句子B是很相似的,事实上它们的夹角大约为20.3度。

由此,我们就得到了"找出相似文章"的一种算法:

  (1)使用TF-IDF算法,找出两篇文章的关键词;

  (2)每篇文章各取出若干个关键词(比如20个),合并成一个集合,计算每篇文章对于这个集合中的词的词频(为了避免文章长度的差异,可以使用相对词频);

  (3)生成两篇文章各自的词频向量;

  (4)计算两个向量的余弦相似度,值越大就表示越相似。

"余弦相似度"是一种非常有用的算法,只要是计算两个向量的相似程度,都可以采用它。

TF-IDF算法与余弦相似性的更多相关文章

  1. tf–idf算法解释及其python代码实现(下)

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...

  2. tf–idf算法解释及其python代码实现(上)

    tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息 ...

  3. 55.TF/IDF算法

    主要知识点: TF/IDF算法介绍 查看es计算_source的过程及各词条的分数 查看一个document是如何被匹配到的         一.算法介绍 relevance score算法,简单来说 ...

  4. Elasticsearch由浅入深(十)搜索引擎:相关度评分 TF&IDF算法、doc value正排索引、解密query、fetch phrase原理、Bouncing Results问题、基于scoll技术滚动搜索大量数据

    相关度评分 TF&IDF算法 Elasticsearch的相关度评分(relevance score)算法采用的是term frequency/inverse document frequen ...

  5. tf–idf算法解释及其python代码

    tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四 ...

  6. 25.TF&IDF算法以及向量空间模型算法

    主要知识点: boolean model IF/IDF vector space model     一.boolean model     在es做各种搜索进行打分排序时,会先用boolean mo ...

  7. Elasticsearch学习之相关度评分TF&IDF

    relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度 Elasticsearch使用的是 term frequency/inverse doc ...

  8. 基于TF/IDF的聚类算法原理

        一.TF/IDF描述单个term与特定document的相关性TF(Term Frequency): 表示一个term与某个document的相关性. 公式为这个term在document中出 ...

  9. 信息检索中的TF/IDF概念与算法的解释

    https://blog.csdn.net/class_brick/article/details/79135909 概念 TF-IDF(term frequency–inverse document ...

随机推荐

  1. 使用 Java 创建聊天客户端-2

    1.项目截图 java聊天核心代码: MyJavaChatClient ================================================================ ...

  2. 数据结构实验之查找四:二分查找(SDUT 3376)

    #include <stdio.h> #include <string.h> #include <stdlib.h> int a[1000005]; int fin ...

  3. 【原创】go语言学习(十六)接口

    目录 接口介绍与定义 空接口和类型断言 指针接收和值接收区别 接口嵌套 接口介绍与定义 1. 接口定义了一个对象的行为规范 A. 只定义规范,不实现B. 具体的对象需要实现规范的细节 2.Go中接口定 ...

  4. 数据层面;MySQL查

    AND 运算优先于OR运算执行(通过括号进行强化) count(*) 会得到包含NULL的数据行数:count(<列明>)会得到NULL之外的数据行数 SQL语句的总逻辑:书写顺序 sel ...

  5. c标签页面进行解析json

    JAVA代码中的后台 List<Map<String,String>> rs = new ArrayList<Map<String,String>>() ...

  6. GO 类型断言

    在Go语言中,我们可以使用type switch语句查询接口变量的真实数据类型,语法如下: switch x.(type) { // cases } x必须是接口类型. 来看一个详细的示例: type ...

  7. M有SQL删除数据库提示Error dropping database (can't rmdir './db_test', errno: 39)

    1.执行ps aux | grep mysql,查看mysql的data目录,比如结果是--datadir=/var/lib/mysql.2.进入data目录,删除以该数据库为名字的文件夹.cd /v ...

  8. IIS部署常见错误

    1.404.17 2.402.2 3.401.3 4.未能加载文件或程序集“System.Data.SQLite”或它的某一个依赖项”的解决方法

  9. 解决Mac系统IDEA debug卡顿问题

    查询资料发现,跟JDK8以及hosts设置有关. vim /private/etc/hosts 在127.0.0.1 localhost后面加上主机名即可,如<your hostname> ...

  10. linux几种传输方式与拷贝方式的性能分析

    本文记录linux系统中文件传输的多种方式,留作备忘.linux中文件传输的方式有ftp,scp,rsync,rz,sz等,但各个工具的功能又有所区别: FTP : FTP是文件服务器,可实现文件的上 ...