codeforces514E
Darth Vader and Tree
When Darth Vader gets bored, he sits down on the sofa, closes his eyes and thinks of an infinite rooted tree where each node has exactly n sons, at that for each node, the distance between it an its i-th left child equals to di. The Sith Lord loves counting the number of nodes in the tree that are at a distance at most x from the root. The distance is the sum of the lengths of edges on the path between nodes.
But he has got used to this activity and even grew bored of it. 'Why does he do that, then?' — you may ask. It's just that he feels superior knowing that only he can solve this problem.
Do you want to challenge Darth Vader himself? Count the required number of nodes. As the answer can be rather large, find it modulo 109 + 7.
Input
The first line contains two space-separated integers n and x (1 ≤ n ≤ 105, 0 ≤ x ≤ 109) — the number of children of each node and the distance from the root within the range of which you need to count the nodes.
The next line contains n space-separated integers di (1 ≤ di ≤ 100) — the length of the edge that connects each node with its i-th child.
Output
Print a single number — the number of vertexes in the tree at distance from the root equal to at most x.
Examples
3 3
1 2 3
8
Note
Pictures to the sample (the yellow color marks the nodes the distance to which is at most three)
给出一个每个节点有n个孩子的多叉树,父亲到第i个孩子有固定的长度,问到根节点的距离不超过x的节点的数目。
1 <= n <= 1e5; 0 <= x <= 1e9; 1 <= di <= 100  Mod=1e9+7
sol:有一个较显然的dp,dp[i]表示深度为i的点的个数,这样就有了一个很裸的暴力
/*
给出一个每个节点有n个孩子的多叉树,父亲到第i个孩子有固定的长度,问到根节点的距离不超过x的节点的数目。
1 <= n <= 1e5; 0 <= x <= 1e9; 1 <= di <= 100 Mod=1e9+7
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read()
{
ll s=; bool f=; char ch=' ';
while(!isdigit(ch)) {f|=(ch=='-'); ch=getchar();}
while(isdigit(ch)) {s=(s<<)+(s<<)+(ch^); ch=getchar();}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<) {putchar('-'); x=-x;}
if(x<) {putchar(x+''); return;}
write(x/); putchar((x%)+'');
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const ll N=,Mod=;
ll n,m,d[N];
ll dp[N],f[];
inline void Ad(ll &x,ll y)
{
x+=y; x-=(x>=Mod)?Mod:;
}
int main()
{
freopen("codeforces514E_data.in","r",stdin);
int i,j,k;
R(n); R(m);
for(i=;i<=n;i++) f[d[i]=read()]++; sort(d+,d+n+); n=unique(d+,d+n+)-d-;
dp[]=;
for(i=;i<=m;i++)
{
for(j=;j<=min(i,);j++) Ad(dp[i],dp[i-j]*f[j]%Mod);
}
ll ans=;
for(i=;i<=m;i++) Ad(ans,dp[i]);
Wl(ans);
return ;
}
然后发现di很小,转移方程可以用矩阵快速幂优化,发现转移dp[x]时有用的就是dp[x-100]~dp[x],而在转移dp[x+1]时有用的就是dp[x-99]~dp[x+1]了,而转移就是向暴力写的dp一样,每次只要转移最后一位就是了,前面的都可以搬过来,所以矩阵就可以推了
[0 0 0 ... 0 0 f[100] f[100]]
[1 0 0 ... 0 0 f[99]  f[99]    ]
[0 1 0 ... 0 0 f[98]  f[98]    ]
[0 0 1 ... 0 0 f[97]  f[97]    ]
				...
[0 0 0 ... 0 1 f[1]   f[1]        ]
[0 0 0 ... 0 0 0        1              ]
/*
给出一个每个节点有n个孩子的多叉树,父亲到第i个孩子有固定的长度,问到根节点的距离不超过x的节点的数目。
1 <= n <= 1e5; 0 <= x <= 1e9; 1 <= di <= 100 Mod=1e9+7
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read()
{
ll s=; bool f=; char ch=' ';
while(!isdigit(ch)) {f|=(ch=='-'); ch=getchar();}
while(isdigit(ch)) {s=(s<<)+(s<<)+(ch^); ch=getchar();}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<) {putchar('-'); x=-x;}
if(x<) {putchar(x+''); return;}
write(x/); putchar((x%)+'');
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const ll N=,Mod=;
ll n,m,dp[N],f[N],Qzh[N];
ll a[N][N],b[N][N],c[N][N],ans[N][N];
inline void Ad(ll &x,ll y)
{
x+=y; x-=(x>=Mod)?Mod:;
}
int main()
{
freopen("codeforces514E_data.in","r",stdin);
freopen("my.out","w",stdout);
int i,j,k;
R(n); R(m);
for(i=;i<=n;i++) f[read()]++;
dp[]=Qzh[]=;
for(i=;i<=;i++)
{
for(j=;j<=i;j++) Ad(dp[i],dp[i-j]*f[j]%Mod);
Qzh[i]=Qzh[i-]; Ad(Qzh[i],dp[i]);
}
if(m<=)
{
Wl(Qzh[m]); return ;
}
// for(i=0;i<=100;i++) W(dp[i]); puts("");
for(i=;i<=;i++) ans[][i]=dp[i]; ans[][]=Qzh[];
for(i=;i<=;i++) a[i][i]=;
for(i=;i<=;i++) b[i][i-]=; b[][]=;
for(i=;i<=;i++) b[i][]=b[i][]=f[-i];
// for(i=1;i<=101;i++,puts("")) for(j=1;j<=101;j++) W(b[i][j]);
// memmove(b,a,sizeof b);
int oo=m-;
while(oo)
{
if(oo&)
{
memset(c,,sizeof c);
for(i=;i<=;i++) for(j=;j<=;j++) for(k=;k<=;k++)
{
Ad(c[i][j],1ll*a[i][k]*b[k][j]%Mod);
}
memmove(a,c,sizeof a);
}
oo>>=;
memset(c,,sizeof c);
for(i=;i<=;i++) for(j=;j<=;j++) for(k=;k<=;k++)
{
Ad(c[i][j],1ll*b[i][k]*b[k][j]%Mod);
}
memmove(b,c,sizeof b);
}
memset(c,,sizeof c);
for(i=;i<=;i++) for(j=;j<=;j++) for(k=;k<=;k++)
{
Ad(c[i][j],ans[i][k]*a[k][j]%Mod);
}
memmove(ans,c,sizeof ans);
Wl(ans[][]);
return ;
}
codeforces514E的更多相关文章
随机推荐
- windows安装docker,快捷启动方式无法启动
			
1.在双击“Docker Quickstart Terminal”时弹出缺少快捷方式,截图如下 2.单机快捷方式查看属性,发现配置的git位置是有问题的 现在只需要把git的正确地址配置好就可以了 现 ...
 - nodejs中使用mongodb
			
/** * 使用mongodb存储数据 * 1 首先安装mongodb nodejs插件 npm install mongodb --save-dev * 2 安装express (非必须) * * ...
 - Linux:定时任务crond服务
			
一.crond简介 crond是linux下用来周期性的执行某种任务或等待处理某些事件的一个守护进程,与windows下的计划任务类似,当安装完成操作系统后,默认会安装此服务工具,并且会自动启动cro ...
 - iOS - Scenekit3D引擎初探之 - 导入模型+上传服务器+下载并简单设置
			
SceneKit是ios8之后苹果推出了一个3D模型渲染框架. SceneKit现在可以支持有限的几种模型,截止到我写这篇文章为止似乎只有.dae和.abc后一种模型我没有使用过.这篇文章只针对.da ...
 - Linux 常见压缩格式详解
			
linux 文件压缩格式详解 压缩文件原理 在计算机科学和信息论中,数据压缩或者源编码是按照特定的编码机制用比未经编码少的数据比特(或者其它信息相关的单位)表示信息的过程.例如,如果我们将" ...
 - 【js】字符串反转(倒序)的多种处理方式
			
今天发布一篇关于字符串反转的几种方式(一种问题的解决方案不是只有一种). 方式1: 这种方式比较简单,推荐使用 字符串转数组,反转数组,数组转字符串. split(""):根据空字 ...
 - SR开启时LOG_MODE必须是normal
			
SR开启时LOG_MODE必须是normal 需要一个初始化备份,
 - 织梦dede:channelartlist调用排除指定typeid栏目
			
在使用 dede:channelartlist 自动调用栏目内容时,经常会遇到某些栏目不需要调用,比如“关于我们”.“联系地址”等无持续更新的栏目.要想在 dede:channelartlist 调用 ...
 - 40个优化你的php代码的小提示
			
1. 若是一个办法可静态化,就对它做静态声明.速度可提拔至4倍. 2. echo 比 print 快. 3. 应用echo的多重参数(译注:指用逗号而不是句点)庖代字符串连接. 4. 在履行for轮回 ...
 - linux网络编程之socket编程(十五)
			
今天继续学习socket编程,这次主要是学习UNIX域协议相关的知识,下面开始: [有个大概的认识,它是来干嘛的] ①.UNIX域套接字与TCP套接字相比较,在同一台主机的传输速度前者是后者的两倍. ...