gunicorn 介绍与性能分析
阅读此文前建议先阅读 我的博客
gunicorn 是一个 python wsgi http server,只支持在 unix 系统上运行
安装
gunicorn 其实是 python 的一个包,安装方法同一般包的安装
pip install gunicorn
也可 tar 包安装
安装完毕可用如下命令检测
[root@node bin]# gunicorn -h
-h 就是 help,查看 gunicorn 命令的参数
gunicorn 参数
-c CONFIG : CONFIG,配置文件的路径,通过配置文件启动;生产环境使用; -b ADDRESS : ADDRESS,ip加端口,绑定运行的主机; -w INT, --workers INT:用于处理工作进程的数量,为正整数,默认为1; -k STRTING, --worker-class STRTING:要使用的工作模式,默认为sync异步,可以下载eventlet和gevent并指定 --threads INT:处理请求的工作线程数,使用指定数量的线程运行每个worker。为正整数,默认为1。 --worker-connections INT:最大客户端并发数量,默认情况下这个值为1000。 --backlog int:未决连接的最大数量,即等待服务的客户的数量。默认2048个,一般不修改; -p FILE, --pid FILE:设置pid文件的文件名,如果不设置将不会创建pid文件 --access-logfile FILE : 要写入的访问日志目录 --access-logformat STRING:要写入的访问日志格式 --error-logfile FILE, --log-file FILE : 要写入错误日志的文件目录。 --log-level LEVEL : 错误日志输出等级。 --limit-request-line INT : HTTP请求头的行数的最大大小,此参数用于限制HTTP请求行的允许大小,默认情况下,这个值为4094。值是0~8190的数字。 --limit-request-fields INT : 限制HTTP请求中请求头字段的数量。此字段用于限制请求头字段的数量以防止DDOS攻击,默认情况下,这个值为100,这个值不能超过32768 --limit-request-field-size INT : 限制HTTP请求中请求头的大小,默认情况下这个值为8190字节。值是一个整数或者0,当该值为0时,表示将对请求头大小不做限制 -t INT, --timeout INT:超过这么多秒后工作将被杀掉,并重新启动。一般设定为30秒; --daemon: 是否以守护进程启动,默认false; --chdir: 在加载应用程序之前切换目录; --graceful-timeout INT:默认情况下,这个值为30,在超时(从接收到重启信号开始)之后仍然活着的工作将被强行杀死;一般使用默认; --keep-alive INT:在keep-alive连接上等待请求的秒数,默认情况下值为2。一般设定在1~5秒之间。 --reload:默认为False。此设置用于开发,每当应用程序发生更改时,都会导致工作重新启动。 --spew:打印服务器执行过的每一条语句,默认False。此选择为原子性的,即要么全部打印,要么全部不打印; --check-config :显示现在的配置,默认值为False,即显示。 -e ENV, --env ENV: 设置环境变量;
gunicorn 配置
gunicorn 有两种配置方式
命令行
示例如下
gunicorn -w 8 -b 0.0.0.0:5002 simple_flask:app
simple_flask 是 flask 的主文件
app 是 主文件中那个 app flask 对象
配置文件启动
# gunicorn.conf # 并行工作进程数
workers = 4
# 指定每个工作者的线程数
threads = 2
# 监听内网端口5000
bind = '127.0.0.1:5000'
# 设置守护进程,将进程交给supervisor管理
daemon = 'false'
# 工作模式协程
worker_class = 'gevent'
# 设置最大并发量
worker_connections = 2000
# 设置进程文件目录
pidfile = '/var/run/gunicorn.pid'
# 设置访问日志和错误信息日志路径
accesslog = '/var/log/gunicorn_acess.log'
errorlog = '/var/log/gunicorn_error.log'
# 设置日志记录水平
loglevel = 'warning'
启动 gunicorn
gunicorn -c gunicorn.conf app:app
gunicorn VS 自带服务
flask 项目
from flask import Flask
app = Flask(__name__)
@app.route("/")
def hello():
return "Hello, World!"
if __name__ == '__main__':
app.run(host='0.0.0.0')
flask 自带服务器启动 web
对其进行压力测试,模拟 200 个用户发起 9000 个请求
ab -n 9000 -c 200 -r "http://172.16.89.80:5000/"
输出
Server Software: Werkzeug/0.16.0
Server Hostname: 172.16.89.80
Server Port: 5000 Document Path: /
Document Length: 13 bytes Concurrency Level: 200
Time taken for tests: 13.862 seconds
Complete requests: 9000
Failed requests: 0
Write errors: 0
Total transferred: 1503000 bytes
HTML transferred: 117000 bytes
Requests per second: 649.26 [#/sec] (mean)
Time per request: 308.043 [ms] (mean)
Time per request: 1.540 [ms] (mean, across all concurrent requests)
Transfer rate: 105.89 [Kbytes/sec] received
Complete requests 9000 个请求;
Time taken for tests 共耗时 13.862 s;
Requests per second 每秒处理请求 649.26 个; 649.26 x 13.862 = 9000.04
注意 200 个用户(并发)并不是说并发量是 200,因为一个用户可能 狂点,在一个 request-response 没结束之前,狂点多次请求,这也是并发,所以上述输出表明 并发量 为 649
gunicorn 启动 flask
gunicorn -w 8 -b 0.0.0.0:5002 simple_flask:app
压力测试,同样模拟 200 个用户 发起 9000 个请求
/usr/bin/ab -n 9000 -c 200 -r -k 'http://172.16.89.80:5002/'
输出
Concurrency Level: 200
Time taken for tests: 1.998 seconds
Complete requests: 9000
Failed requests: 0
Write errors: 0
Keep-Alive requests: 0
Total transferred: 1557000 bytes
HTML transferred: 117000 bytes
Requests per second: 4503.48 [#/sec] (mean)
Time per request: 44.410 [ms] (mean)
Time per request: 0.222 [ms] (mean, across all concurrent requests)
Transfer rate: 760.84 [Kbytes/sec] received
类比上面来看本次输出,很明显,效率高;
并发量 4503,将近 8 倍
有意思的是我们让 gunicorn 开了 8个 进程,所以可以这么理解, gunicorn 效率 = 单进程效率(自带服务器)x 进程数
当然 这也要跟 硬件 有关系,如果你只是 8 核 的服务器,开了 80 个进程,就不能这么算了
用 gevent 并发量更大
gunicorn -k gevent -w 8 -b 0.0.0.0:5002 simple_flask:app
并发量 4890。
gunicorn VS nginx
测试样例还是上面那个 flask 项目
这里只做简单分析,因为测试时跟硬件有一定关系
gunicorn 性能
Concurrency Level: 10000
Time taken for tests: 25.494 seconds
Complete requests: 100000
Failed requests: 292
(Connect: 0, Receive: 88, Length: 116, Exceptions: 88)
Write errors: 0
Total transferred: 17279932 bytes
HTML transferred: 1298492 bytes
Requests per second: 3922.52 [#/sec] (mean)
Time per request: 2549.384 [ms] (mean)
Time per request: 0.255 [ms] (mean, across all concurrent requests)
Transfer rate: 661.92 [Kbytes/sec] received
失败 292 次请求,并发 3922
nginx 性能
Concurrency Level: 10000
Time taken for tests: 26.333 seconds
Complete requests: 100000
Failed requests: 42
(Connect: 0, Receive: 0, Length: 42, Exceptions: 0)
Write errors: 0
Total transferred: 17292734 bytes
HTML transferred: 1299454 bytes
Requests per second: 3797.45 [#/sec] (mean)
Time per request: 2633.344 [ms] (mean)
Time per request: 0.263 [ms] (mean, across all concurrent requests)
Transfer rate: 641.29 [Kbytes/sec] received
失败 42 次请求,并发 3797
nginx 性能不差,重要的是稳定。
参考资料:
https://www.cnblogs.com/cwp-bg/p/8780204.html python之gunicorn的配置
https://blog.csdn.net/y472360651/article/details/78538188 Gunicorn-配置详解
https://www.jianshu.com/p/69e75fc3e08e gunicorn 详解
https://blog.csdn.net/bbwangj/article/details/82684573 gunicorn简介、架构、安装与配置
https://www.jianshu.com/p/b97f80a630db
https://blog.51cto.com/7613336/2074032 优雅的退出/关闭/重启gunicorn进程
gunicorn 介绍与性能分析的更多相关文章
- 八、jdk工具之JvisualVM、JvisualVM之一--(visualVM介绍及性能分析示例)
目录 一.jdk工具之jps(JVM Process Status Tools)命令使用 二.jdk命令之javah命令(C Header and Stub File Generator) 三.jdk ...
- linux系统性能调优第一步——性能分析(vmstat)
linux系统性能调优第一步--性能分析(vmstat) 分类: LINUX 性能调优的第一步是性能分析,下面从性能分析着手进行一些介绍,尤其对linux性能分析工具vmstat的用法和实践进行详细介 ...
- Android性能分析工具介绍
1. Android系统性能调优工具介绍 http://blog.csdn.net/innost/article/details/9008691 TraceviewSystraceOprofile 2 ...
- DB2 性能分析工具介绍:Event Monitor 篇(转)
https://www.ibm.com/developerworks/cn/data/library/techarticle/dm-1112qiaob/ 引言 DB2 提供了两个比较常用的数据库性能分 ...
- 性能分析工具gprof介绍(转载)
性能分析工具gprof介绍Ver:1.0 目录1. GPROF介绍 42. 使用步骤 43. 使用举例 43.1 测试环境 43.2 测试代码 43.3 数据分析 53.3.1 flat profil ...
- 几种常见排序算法的基本介绍,性能分析,和c语言实现
本文介绍6种常见的排序算法,以及他们的原理,性能分析和c语言实现: 为了能够条理清楚,本文所有的算法和解释全部按照升序排序进行 首先准备一个元素无序的数组arr[],数组的长度为length,一个交换 ...
- 系统级性能分析工具perf的介绍与使用
测试环境:Ubuntu16.04(在VMWare虚拟机使用perf top存在无法显示问题) Kernel:3.13.0-32 系统级性能优化通常包括两个阶段:性能剖析(performance pro ...
- PHP 性能分析第一篇: Xhprof & Xhgui 介绍
[前言]这是国外知名博主 Davey Shafik所撰写的 PHP 应用性能分析系列的第一篇,阅读第二篇可深入了解 xhgui,第三篇则关注于性能调优实践. 什么是性能分析? 性能分析是衡量应用程序在 ...
- TraceView性能分析工具介绍
一.TraceView简介 TraceView是AndroidSDK里面自带的工具,用于对Android的应用程序以及Framework层的代码进行性能分析. TraceView是图形化的工具,最终它 ...
随机推荐
- 记一次关于springboot的netty版本冲突问题
冲突的地放其实很多,大概都是类似,找不到哪个方法了: 类似于: Error starting ApplicationContext. To display the conditions report ...
- DB 分库分表(4):多数据源的事务处理
系统经sharding改造之后,原来单一的数据库会演变成多个数据库,如何确保多数据源同时操作的原子性和一致性是不得不考虑的一个问题.总体上看,目前对于一个分布式系统的事务处理有三种方式:分布式事务.基 ...
- 优雅的退出asyncio事件循环
import asyncio import functools import os import signal """ 信号值 符号 行为 2 SIGINT 进程终端,C ...
- (三)C语言之变量
- LeetCode 145. 二叉树的后序遍历(Binary Tree Postorder Traversal)
题目描述 给定一个二叉树,返回它的 后序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [3,2,1] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? 解题思路 后 ...
- 【黑马JavaSE】1_1_9_流程控制:顺序结构、判断结构、选择结构、循环结构
文章目录 1_1_9_01_ 流程控制概述 1_1_9_01_ 顺序结构 1_1_9_ 判断结构 1_1_9_02_ 判断语句1--if 1_1_9_03_ 判断语句2--if...else 1_1_ ...
- Redis内存满了的几种解决方法(内存淘汰策略与Redis集群)
1,增加内存: 2,使用内存淘汰策略. 3,Redis集群. 重点介绍下23: 第2点: 我们知道,redis设置配置文件的maxmemory参数,可以控制其最大可用内存大小(字节). 那么当所需内存 ...
- JavaScript 正则的使用方法
JavaScript正则方法 1.compile 编译一个正则表达式对象 rgExp.compile(pattern, [flags]) pattern字符串表达式 2.exec 在指定字符串中执行 ...
- Redis在window上的安装
1 Redis安装 Redis 没有官方的Windows版本,但是微软开源技术团队(Microsoft Open Tech group)开发和维护着这个 Win64 的版本. 在github上面可以下 ...
- pyQt点击事件和数据传输
首先是PushButton点击事件,点击按钮之后发送textEdit框里输入的文字到后台. def retranslateUi(self, MainWindow): _translate = QtCo ...