数据集:Introduction to Econometrics by Stock&Watson
James H. Stock and Mark W. Watson, Introduction to Econometrics: data sets
詹姆斯·H·斯托克 马克·W·沃森. 计量经济学. 数据集
学生资源
https://wps.pearsoned.com/aw_stock_ie_3/178/45691/11696965.cw/index.html
Third Edition or Third Edition Update
Data for Empirical Exercises and Test Bank
- Data for Empirical Exercises and Test Bank (Original Edition)
- Data for Empirical Exercises and Test Bank (Updated Edition)
STATA 数据集
Each of these data sets is readable by Stata over the Web. You need only copy the line given below each dataset into your Stata command window or Stata do-file. After loading the data into Stata, use save to make a copy of the data on your own machine if you wish. The link from each dataset's name gives you the codebook of variable names and definitions. Please report any problems accessing these data to baum.
- CASCHOOL: N=420, panel data on test performance, school characteristics and student demographic backgrounds for California school districts, 1998-1999.
use http://fmwww.bc.edu/ec-p/data/stockwatson/caschool - CIG_CH10: N=96, Panel data, annual per capita cigarette sales for 48 states in packs per fiscal year in 1985 and 1995, only.
use http://fmwww.bc.edu/ec-p/data/stockwatson/cig_ch10 - CIG85_95: N=528, Panel data, annual per capita cigarette sales for 48 states in packs per fiscal year from 1985-1995.
use http://fmwww.bc.edu/ec-p/data/stockwatson/cig85_95 - CPS_CH3: N=11130, Panel data: the Current Population Survey (CPS) provides data on labor force characteristics of the population, 1992-1998.
use http://fmwww.bc.edu/ec-p/data/stockwatson/cps_ch3 - FATALITY: N=336, Panel data, number of state traffic fatalities for 48 states, 1982-1988.
use http://fmwww.bc.edu/ec-p/data/stockwatson/fatality - HMDA_AER: N=2925, Cross-sectional data, mortgage applications made in 1990 in the greater Boston metropolitan area.
use http://fmwww.bc.edu/ec-p/data/stockwatson/hmda_aer - HMDA_SW: N=2380, Cross-sectional data, mortgage applications made in 1990 in the greater Boston metropolitan area using a subset of the original dataset.
use http://fmwww.bc.edu/ec-p/data/stockwatson/hmda_sw - JOURNALS: N=180, Cross-sectional data on 180 economics journals for the year 2000.
use http://fmwww.bc.edu/ec-p/data/stockwatson/journals - OJ: N=642, Time-series data on frozen and finished Florida orange juice prices, 1948-2001.
use http://fmwww.bc.edu/ec-p/data/stockwatson/oj - MACRODAT: N=168, Time-series macroeconomic data.
use http://fmwww.bc.edu/ec-p/data/stockwatson/macrodat - MCAS: N=220, Cross-sectional data, district-wide averages for Mass. public elementary school districts in 1998.
use http://fmwww.bc.edu/ec-p/data/stockwatson/mcas
STAR_SW(http://fmwww.bc.edu/ec-p/data/stockwatson/STAR_SW.des): N=11598, Subset of the variables in WEBSTAR.
use http://fmwww.bc.edu/ec-p/data/stockwwatson/star_sw - WEBSTAR: N=11598, Panel data on test scores, treatment groups, and student and teacher characteristics for four years (1985-86 to 1988-89).
use http://fmwww.bc.edu/ec-p/data/stockwatson/webstar
数据集:Introduction to Econometrics by Stock&Watson的更多相关文章
- (转) Using the latest advancements in AI to predict stock market movements
Using the latest advancements in AI to predict stock market movements 2019-01-13 21:31:18 This blog ...
- An Introduction to Stock Market Data Analysis with R (Part 1)
Around September of 2016 I wrote two articles on using Python for accessing, visualizing, and evalua ...
- mongoDB index introduction
索引为mongoDB的查询提供了有效的解决方案,如果没有索引,mongodb必须的扫描文档集中所有记录来match查询条件的记录.然而这些扫描是没有必要,而且每一次操作mongod进程会处理大量的数据 ...
- 【转】[特征选择] An Introduction to Feature Selection 翻译
中文原文链接:http://www.cnblogs.com/AHappyCat/p/5318042.html 英文原文链接: An Introduction to Feature Selection ...
- 阅读笔记Multi-task Learning for Stock Selection [NIPS1996]
Multi-task Learning for Stock Selection Joumana Ghosn and Yoshua Bengio 摘要 用人工神经网络预测未来回报以便于做出对应的金融决 ...
- 人工智能范畴及深度学习主流框架,IBM Watson认知计算领域IntelligentBehavior介绍
人工智能范畴及深度学习主流框架,IBM Watson认知计算领域IntelligentBehavior介绍 工业机器人,家用机器人这些只是人工智能的一个细分应用而已.图像识别,语音识别,推荐算法,NL ...
- Introduction to Machine Learning
Chapter 1 Introduction 1.1 What Is Machine Learning? To solve a problem on a computer, we need an al ...
- Introduction to Financial Management
Recently,i am learning some useful things about financial management by reading <Essentials of Co ...
- Samza文档翻译 : Comparison Introduction
http://samza.incubator.apache.org/learn/documentation/0.7.0/comparisons/introduction.html 这里有一些使得Sam ...
随机推荐
- SSH整合入门案例
package loaderman.action; import java.util.Map; import com.opensymphony.xwork2.ActionContext; import ...
- openstack核心组件--glance镜像(2)
一.glance介绍: Glance是Openstack项目中负责镜像管理的模块,其功能包括虚拟机镜像的查找.注册和检索等. Glance提供Restful API可以查询虚 ...
- 公式test
- ElasticSearch——分词
前言: 最近在使用elasticSearch中发现有些数据查不出来,于是研究了一下,发现是分词导致的,现梳理并总结一下. ElasticSearch 5.0以后,string类型有重大变更,移除了st ...
- 同步pod容器内时区
同步pod容器内时区 .直接修改镜像的时间设置,好处是应用部署时无需做特殊设置,但是需要手动构建Docker镜像. .部署应用时,单独读取主机的“/etc/localtime”文件,即创建pod时同步 ...
- lua学习笔记2--table
table是lua中的一种"数据/代码结构",可以用俩创建不同的"数据类型"lua语言中的数组其实就是table类型 array = {, , , , } pr ...
- Windows To Go 制作详解
拥有 Mac 的同学大概都会碰到一个头疼的问题,那就是使用 Windows 的使用需求.macOS 虽好,不过总是会有一些讨厌的软件没有 Mac 版本,这时就不得不在 Mac 上跑 Windows 了 ...
- XML中不能识别&符号, 需要转义吗?
“&”在XML中是具有特殊含义的,是转义字符的前缀,如果要想用这个字符就需要转义.遇到“&”就替换成“&”就好了; xml所有转义符 和 & & 大于 ...
- 算法flink
和Yarn-Cluster模式不同,Session模式的资源在启动Yarn-Session时候就已经启动了,后续提交的作业全都在已申请的资源空间内运行,比较适合小而多的作业 # 启动yarn-sess ...
- Python三大主流框架的对比
相信做Python这一块的程序员都有听说这三个框架,就像神一样的存在,每一个框架的介绍我就不写出来了,感兴趣可以自己百度了解了解!下面我就说正事 Django:Python 界最全能的 web 开发框 ...