(安装:NVIDIA-384+CUDA9.0+cuDNN7.1)

显卡(GPU)驱动:NVIDIA-384

CUDA:CUDA9.0

cuDNN:cuDNN7.1

Ubuntu 下安装CUDA需要装NVIDIA驱动,首先进入NVIDIA官网,然后查询对应NVIDIA驱动是否支持你电脑的型号。

这里我的电脑是:华硕F450J ,自带的NVIDIA GEFORCE 745。

第一步、安装NVIDIA GPU驱动

NVIDIA官网查询是否支持我电脑的GPU如下

可以看出:GeForce 700M Series (Notebooks):

GeForce GTX 780M, GeForce GTX 770M, GeForce GTX 765M, GeForce GTX 760M, GeForce GT 755M, GeForce GT 750M, GeForce GT 745M, GeForce GT 740M, GeForce GT 735M, GeForce GT 730M, GeForce GT 720M, GeForce GT 710M, GeForce 720M, GeForce 710M, GeForce 705M

GeForce GT 745M为我电脑的型号,所以version:390.48是支持我的NVIDIAGPU驱动的。

所以第二部我们安装NVIDIA DISPLAY DRIVER  version:390.48 执行如下代码:

第一部分:安装后续步骤或环境必需的依赖包

 sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler   

 sudo apt-get install --no-install-recommends libboost-all-dev   

 sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev   

 sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev   

 sudo apt-get install git cmake build-essential

输入以下代码输出如下信息则表示依赖环境安装成功

code:

 sudo apt-get install git cmake build-essential 

显示:

 Reading package lists... Done
Building dependency tree
Reading state information... Done
build-essential is already the newest version (12.1ubuntu2).
cmake is already the newest version (3.5.1-1ubuntu3).
git is already the newest version (1:2.7.4-0ubuntu1.3).
0 upgraded, 0 newly installed, 0 to remove and 126 not upgraded.

表示依赖环境安装成功

第二部分:安装显示驱动

官网下载NVIDIA的显卡(GPU)驱动然后运行。或者直接终端上运行,执行如下代码。

sudo apt-get update  
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update
sudo apt-get install nvidia-384
sudo apt-get install mesa-common-dev
sudo apt-get install freeglut3-dev   

执行结束后,重新启动系统

sudo reboot  #或者sudo shutdown -r now

开机后检测是否安装显示驱动成功

nvidia-settings  #或者直接点击dash开始界面输入NVIDIA查看

显示如下信息表示安装成功

配置环境变量

sudo gedit ~/.bashrc

在.bashrc中加入如下两行

export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH

第二步、安装NVIDIA CUDA

第一部分、先进入NVIDIA官网的CUDA Toolkit 下载界面

如下图所示,下载CUDA Toolkit

注意:这个地方的提示,要安装这个CUDA Toolkit 9.1,需要先安装至少NVIDIA DISPLAY DRIVER R390 版本3.90以上。

CUDA Toolkit

下载好CUDA Toolkit9.1后,执行如下代码进行安装(此处不需要安装OPGL),代码如下:

 sudo sh cuda_9.0.176_384.81_linux.run --no-opengl-libs    #run文件的文件名根据自己下的文件名修改,默认是我提供的文件 

输出显示:

 Do you accept the previously read EULA?
accept/decline/quit: accept
Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 384.81?
(y)es/(n)o/(q)uit: n
Install the CUDA 9.0 Toolkit?
(y)es/(n)o/(q)uit: y
Enter Toolkit Location
[ default is /usr/local/cuda-9.0 ]:
Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: y
Install the CUDA 9.0 Samples?
(y)es/(n)o/(q)uit: y
Enter CUDA Samples Location
[ default is /home/pertor ]:
Installing the CUDA Toolkit in /usr/local/cuda-9.0 ...
Missing recommended library: libXmu.so

添加环境变量:

sudo gedit ~/.bashrc

export PATH=/usr/local/cuda-8.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH source ~/.bashrc

验证CUDA9.0是否安装成功

cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery

sudo make

./deviceQuery

输出如下信息表示成功安装

./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GT 740M"
CUDA Driver Version / Runtime Version 8.0 / 8.0
CUDA Capability Major/Minor version number: 3.5
Total amount of global memory: 2004 MBytes (2100953088 bytes)
( 2) Multiprocessors, (192) CUDA Cores/MP: 384 CUDA Cores
GPU Max Clock rate: 1032 MHz (1.03 GHz)
Memory Clock rate: 800 Mhz
Memory Bus Width: 64-bit
L2 Cache Size: 524288 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers

第三步、安装NVIDIA cuDNN

登录官网下载cuDNN

这个需要申请账号,注册后进入官网,如下图所示

  cuDNN 的全称是 The NVIDIA CUDA® Deep Neural Network library,是专门用来对深度学习加速的库,它支持 Caffe2, MATLAB, Microsoft Cognitive Toolkit, TensorFlow, Theano 及 PyTorch 等深度学习的加速优化,目前最新版本是 cuDNN 7.1,接下来我们来看下它的安装方式。

下载链接:https://developer.nvidia.com/rdp/cudnn-download,需要注册之后才能打开,这里我们选择 cuDNN v7.1.1 (Feb 28, 2018), for CUDA 9.0,然后选择 cuDNN v7.1.1 Library for Linux,如图所示:

下载下来之后解压安装,执行如下步骤:

 tar -zxvf cudnn-9.0-linux-x64-v7.1.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ -d
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

  执行完如上命令之后,cuDNN 就安装好了,这时我们可以发现在 /usr/local/cuda/include 目录下就多了 cudnn.h 头文件。

终端中执行nvcc -V 显示如下信息则表示成功

nvcc -V

pertor@pertor-computer:~$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Sep__1_21:08:03_CDT_2017
Cuda compilation tools, release 9.0, V9.0.176

提示:

  不建议安装CUDA 9.1 ,建议安装CUDA 9.0版本。CUDA 9.1里面自带387驱动,但是一般CUDA 9.1自带的驱动一般很难安装成功的,所以建议自己去单独安装384显示驱动。并且官网提示CUDA9.1 需要的显卡驱动必须至少是390以上版本,所以安装了384显卡驱动则需要安装CUDA9.0。

  为了保险起见我们应该装CUDA 9.0和 nvidia-384这个版本。

CAFFE(一):Ubuntu 下安装CUDA(安装:NVIDIA-384+CUDA9.0+cuDNN7.1)的更多相关文章

  1. ubuntu18.04下搭建深度学习环境anaconda2+ cuda9.0+cudnn7.0.5+tensorflow1.7【原创】【学习笔记】

    PC:ubuntu18.04.i5.七彩虹GTX1060显卡.固态硬盘.机械硬盘 作者:庄泽彬(欢迎转载,请注明作者) 说明:记录在ubuntu18.04环境下搭建深度学习的环境,之前安装了cuda9 ...

  2. ubuntu 16.04 +anaconda3.6 +Nvidia DRIVER 390.77 +CUDA9.0 +cudnn7.0.4+tensorflow1.5.0+neural-style

    这是我第一个人工智能实验.虽然原理不是很懂,但是觉得深度学习真的很有趣.教程如下. Table of Contents 配置 时间轴 前期准备工作 anaconda3 安装 bug 1:conda:未 ...

  3. Ubuntu下git的安装与使用

    Ubuntu下git的安装与使用 Ubuntu下git的安装与使用与Windows下的大致相同,只不过个人感觉在Ubuntu下使用git更方便. 首先,确认你的系统是否已安装git,可以通过git指令 ...

  4. Ubuntu下Speedtest的安装

    要安装Speedtest,需要先安装apache,参见<Ubuntu下Apache的安装>一文:*(再安装LAMP server,参见<Ubuntu下快速安装LAMP server& ...

  5. Ubuntu下Apache的安装

    Ubuntu下可快速安装LAMP server(Apache+MySQL+PHP5),参见<Ubuntu下快速安装LAMP server>一文. 也可以手动安装Apache.本文介绍如何手 ...

  6. Linux(Ubuntu)下MySQL的安装与配置

    转自:http://www.2cto.com/database/201401/273423.html 在Linux下MySQL的安装,我一直觉得挺麻烦的,因为之前安装时就是由于复杂的配置导致有点晕.今 ...

  7. ubuntu下的openfire安装、配置、运行

    openfire服务器              Openfire 采用Java开发,开源的实时协作(RTC)服务器基于XMPP(Jabber)协议.您可以使用它轻易的构建高效率的即时通信服务器.Op ...

  8. ubuntu下boost编译安装

    ubuntu下boost编译安装 boost 安装 1.依赖安装 apt-get install mpi-default-dev libicu-dev python-dev python3-dev l ...

  9. 2010-01-20 12:09 ubuntu下minicom的安装及使用

    转http://hi.baidu.com/npugtawqdnbgqrq/item/106f805409b42813db163527 ubuntu下minicom的安装及使用 安装: sudo apt ...

随机推荐

  1. iOS面试-堆和栈的区别

    堆和栈的区别: 一.堆栈空间分配区别: 1.栈(操作系统):由操作系统自动分配释放 ,存放函数的参数值,局部变量的值等.其操作方式类似于数据结构中的栈: 2.堆(操作系统): 一般由程序员分配释放, ...

  2. wp-query调用前几篇文章的方法

    ---恢复内容开始--- 利用强大的wp-query函数调用指定分类下的前几篇文章,下面的代码表示调用的是分类ID4下的前两篇文章. <?php $cunt_wenzhen = array('c ...

  3. centos7 vim环境优化

    centos7默认是使用vi,而不是使用vim,所以,我们需要修改一下vi的别名,并且,我们使用neovim,vi毕竟还是有很多功能比较原始 所以 yum install neovim -ycat & ...

  4. JKD1.8新特性

    1.Optional类 Optional是jdk1.8引入的类型,Optional是一个容器对象,它包括了我们需要的对象,使用isPresent方法判断所包 含对象是否为空,isPresent方法返回 ...

  5. WPScan使用完整攻略:如何对WordPress站点进行安全测试

    转载自FreeBuf.COM 严正声明:本文仅限于技术探讨,严禁用于其他目的. 写在前面的话 在这篇文章中,我将告诉大家如何使用WPScan来对WordPress站点进行安全测试. WPScan是Ka ...

  6. C语言双指针之盛最多水的容器

    题目描述 给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) .在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0).找出其中 ...

  7. 【Python】**kwargs和takes 1 positional argument but 2 were given

    Python的函数定义中可以在参数里添加**kwargs——简单来说目的是允许添加不定参数名称的参数,并作为字典传递参数.但前提是——你必须提供参数名. 例如下述情况: class C(): def ...

  8. 移动端测试之APP安全测试

    现在APP测试已经是测试行业的一个重要分支,对APP测试技能和经验的要求也越来越高,看到一篇关于APP安全测试的总结,分享给需要的朋友.1.软件权限1)扣费风险:包括发送短信.拨打电话.连接网络等2) ...

  9. hdu 3371 有毒的卡时间题目

    同样的代码 每次交的结果都不一样 #include<stdio.h> #include<string.h> #include<stdlib.h> #include& ...

  10. js 怎样判断用户是否在浏览当前页面

    有些时候我们需要在项目中判断用户是否在浏览当前页面,或者当前页面是否处于激活状态.然后再进行相关的操作.浏览器中可通过window对象的onblur.onfocus判断,或者document的hidd ...