状压dp做题笔记
CodeChef Factorial to Square (分块决策)
Description
给定一个n,要求在[1,n]中删除一些数,并使剩下的数的乘积是一个完全平方数,同时要求乘积最大,求删除方案数.
\(n\leq 3000\)
Solution
首先要构造出最优解,考虑把所有数相乘,发现如果某个质因数出现的奇数次,那就必须要删掉一个.那么只用在[1,n]中把该质数删除即可,得到的就是乘积最大的完全平方数.
现在考虑构造方案. 要求被删除的数包含所有必删质因数,并且只能出现一次. 那么就可以抽象成一个01串.
现在把质因数分类处理,\(<\sqrt{n}\)的为一块,发现这样的质数只有13个,将这些数状压.
剩下的数就暴力枚举,对于一个质因数\(x\geq\sqrt{n}\),他的倍数不会超过\(\sqrt{n}\)个,那么对于每个x,枚举它的倍数做一次背包,同时预处理剩下的数的合法情况,进行转移,复杂度为\(O(n*2^{13})\).
CodeChef Organize The Wallet (dp构造与转移)
Description
一共有7种面值的纸币,现在给定一个长度为n的纸币排列序列,要求进行一些插入操作,使得序列每种面值都是排列在一起的.求最小移动步数.
\(n\leq 100000\)
Solution
- 插入操作的性质:如果把一张纸币拿出来,那么可以把它放到任意位置.
- 可以考虑枚举放置顺序
- 如果在当前状态要放的纸币种类和当前位置的纸币种类不同,那就一定要把这个纸币抽走.
- 如果相同,那就不移动
- 如果该数应该出现在前面,那就插入到前面.
- 转移方程大概为:
- \(chkmin(dp[i][j][k],dp[i-1][j][k]) (Col[i]=k)\)
- \(chkmin(dp[i][j][k],dp[i-1][j][k]+1) (Col[i]!=k,Col[i]\in j)\)
- \(chkmin(dp[i][j|Col[i]][Col[i]],dp[i-1][j][k]) (Col[i]\notin j)\)
- \(chkmin(dp[i][j][k],dp[i-1][j][k]+1)(Col[i]\notin j)\)
状压dp做题笔记的更多相关文章
- 【bzoj3195】【 [Jxoi2012]奇怪的道路】另类压缩的状压dp好题
(上不了p站我要死了) 啊啊,其实想清楚了还是挺简单的. Description 小宇从历史书上了解到一个古老的文明.这个文明在各个方面高度发达,交通方面也不例外.考古学家已经知道,这个文明在全盛时期 ...
- 7月15日考试 题解(链表+状压DP+思维题)
前言:蒟蒻太弱了,全打的暴力QAQ. --------------------- T1 小Z的求和 题目大意:求$\sum\limits_{i=1}^n \sum\limits_{j=i}^n kth ...
- 【bzoj1087】【互不侵犯King】状压dp裸题(浅尝ACM-D)
[pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=54329606 向大(hei)佬(e)势力学(di ...
- POJ 3254 - Corn Fields - [状压DP水题]
题目链接:http://poj.org/problem?id=3254 Time Limit: 2000MS Memory Limit: 65536K Description Farmer John ...
- hdu 1185 状压dp 好题 (当前状态与上两行有关系)
/* 状压dp 刚开始&写成&&看了好长时间T0T. 状态转移方程 dp[i][k][j]=Max(dp[i][k][j],dp[i-1][l][k]+num[i][j]);( ...
- poj 3254 状压dp入门题
1.poj 3254 Corn Fields 状态压缩dp入门题 2.总结:二进制实在巧妙,以前从来没想过可以这样用. 题意:n行m列,1表示肥沃,0表示贫瘠,把牛放在肥沃处,要求所有牛不能相 ...
- 二维状压DP经典题
炮兵阵地 题目链接 题目大意:在n*m的地图上放置炮兵,每个炮兵的攻击范围是上下左右两格内,有两种不同的地形,山地(用"H" 表示),平原(用"P"表示),只有 ...
- 洛谷 P1879 玉米田(状压DP入门题)
传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 相关变量解释: int M,N; int plant[maxn][maxn];/ ...
- HihoCoder - 1048 状压DP 经典题
hihocoder题解说的十分清晰了,这份代码就是从讲解里学习的 方案数就是不断枚举合法状态下横放竖放或两者均可 合法判断的依据是记录当前行和下一行的状态 防止重复枚举的方法是先按行后按列 递归基瞎写 ...
随机推荐
- 关于SpringMVC中的转发与重定向的说明
写的非常详细,参看该地址:https://www.zifangsky.cn/661.html 总结: 1.请求转发:url地址不变,可带参数,如?username=forward 2.请求重定向:ur ...
- 【AtCoder】AGC011
AGC011 A - Airport Bus 大意:有N个人,每个人只能在\([T_i,T_i +K]\)这段区间乘车,每辆车安排C人,问最少安排几辆车 直接扫,遇到一个没有车的在\(T_i +K\) ...
- 【AtCoder】AGC007
AGC007 A - Shik and Stone 如果i + j走过的格子只有一个,那么就是可以走到 #include <bits/stdc++.h> #define fi first ...
- vs code在打开新文件是覆盖上一个窗口的问题
设置里面有个 enablePreview 去掉就好
- 【转】三种方法让你在I2C通信中同时和多个从机通信
ref:http://tieba.baidu.com/p/3769008030 对于不同地址的模块就不用多说了,直接分别对其地址进行通信即可.那么若拿到相同地址的模块,或者直接是相同的多个模块怎么办呢 ...
- Web文件上传靶场 - 通关笔记
Web应用程序通常会提供一些上传功能,比如上传头像,图片资源等,只要与资源传输有关的地方就可能存在上传漏洞,上传漏洞归根结底是程序员在对用户文件上传时控制不足或者是处理的缺陷导致的,文件上传漏洞在渗透 ...
- 空间变换网络(STN)原理+2D图像空间变换+齐次坐标系讲解
空间变换网络(STN)原理+2D图像空间变换+齐次坐标系讲解 2018年11月14日 17:05:41 Rosemary_tu 阅读数 1295更多 分类专栏: 计算机视觉 版权声明:本文为博主原 ...
- Eclipse中项目本身没有问题,可是工程名却有红色小叉叉解决办法
右击项目“Properties”,在弹出的“Properties”的左侧边框,单击“Project Facets”,打开“Project Facets”页面, 在页面中“Java”下拉选项中,选择与自 ...
- 偏移动画(TranslateTransform)
用户界面组件.图像元素和多媒体功能可以让我们的界面生动活泼,除此之外,Silverlight还具备动画功能,它可以让应用程序“动起来”.实际上,英文中Animation这个单词的意思是给某物带来生命. ...
- SP338ROADS题解--最短路变式
题目链接 https://www.luogu.org/problemnew/show/SP338 分析 联想到不久前做过的一道题\(Full\) \(Tank\),感觉可以用优先队列做,于是写了\(d ...