众所周知,极大似然估计是一种应用很广泛的参数估计方法。例如我手头有一些东北人的身高的数据,又知道身高的概率模型是高斯分布,那么利用极大化似然函数的方法可以估计出高斯分布的两个参数,均值和方差。这个方法基本上所有概率课本上都会讲,我这就不多说了,不清楚的请百度。

  然而现在我面临的是这种情况,我手上的数据是四川人和东北人的身高合集,然而对于其中具体的每一个数据,并没有标定出它来自“东北人”还是“四川人”,我想如果把这个数据集的概率密度画出来,大约是这个样子:

  

  好了不要吐槽了,能画成这个样子我已经很用心了= =

  其实这个双峰的概率密度函数是有模型的,称作高斯混合模型(GMM),写作:

  

  话说往博客上加公式真是费劲= =这模型很好理解,就是k个高斯模型加权组成,α是各高斯分布的权重,Θ是参数。对GMM模型的参数估计,就要用EM算法。更一般的讲,EM算法适用于带有隐变量的概率模型的估计,什么是隐变量呢?就是观测不到的变量,对于上面四川人和东北人的例子,对每一个身高而言,它来自四川还是东北,就是一个隐变量。

  为什么要用EM,我们来具体考虑一下上面这个问题。如果使用极大似然估计——这是我们最开始最单纯的想法,那么我们需要极大化的似然函数应该是这个:

  

  然而我们并不知道p(x;θ)的表达式,有同学说我知道啊,不就是上面那个混个高斯模型?不就是参数多一点麽。

  仔细想想,GMM里的θ可是由四川人和东北人两部分组成哟,假如你要估计四川人的身高均值,直接用GMM做似然函数,会把四川人和东北人全考虑进去,显然不合适。

  另一个想法是考虑隐变量,如果我们已经知道哪些样本来自四川,哪些样本来自东北,那就好了。用Z=0或Z=1标记样本来自哪个总体,则Z就是隐变量,需要最大化的似然函数就变为:

  然而并没有卵用,因为隐变量确实不知道。要估计一个样本是来自四川还是东北,我们就要有模型参数,要估计模型参数,我们首先要知道一个样本是来自四川或东北的可能性...

  到底是鸡生蛋,还是蛋生鸡?

  不闹了,我们的方法是假设。首先假设一个模型参数θ,然后每个样本来自四川/东北的概率p(zi)就能算出来了,p(xi,zi)=p(xi|zi)p(zi),而x|z=0服从四川人分布,x|z=1服从东北人分布,所以似然函数可以写成含有θ的函数,极大化它我们可以得到一个新的θ。新的θ因为考虑了样本来自哪个分布,会比原来的更能反应数据规律。有了这个更好的θ我们再对每个样本重新计算它来自四川和东北的概率,用更好的θ算出来的概率会更准确,有了更准确的信息,我们可以继续像上面一样估计θ,自然而然这次得到的θ会比上一次更棒,如此蒸蒸日上,直到收敛(参数变动不明显了),理论上,EM算法就说完了。

  然而事情并没有这么简单,上面的思想理论上可行,实践起来不成。主要是因为似然函数有“和的log”这一项,log里面是一个和的形式,一求导这画面不要太美,直接强来你要面对 “两个正态分布的概率密度函数相加”做分母,“两个正态分布分别求导再相加”做分子的分数形式。m个这玩意加起来令它等于0,要求出关于θ的解析解,你对自己的数学水平想的不要太高。

  怎么办?先介绍一个不等式,叫Jensen不等式,是这样说的:

  X是一个随机变量,f(X)是一个凸函数(二阶导数大或等于0),那么有:

  

  当且仅当X是常数的时候等号成立

  如果f(X)是凹函数,不等号反向

  关于这个不等式,我既不打算证明,也不打算说明,希望你承认它正确就好。

  半路杀出一个Jensen不等式,要用它解决上面的困境也是应有之义,不然说它做什么。直接最大化似然函数做不到,那么如果我们能找到似然函数的一个的下界一直优化它,并保证每次迭代能够使总的似然函数一直增大,其实也是一样的。怎么说?画个图你就明白了:

  

  图画的不好,多见谅。横坐标是参数,纵坐标是似然函数,首先我们初始化一个θ1,根据它求似然函数一个紧的下界,也就是图中第一条黑短线,黑短线上的值虽然都小于似然函数的值,但至少有一点可以满足等号(所以称为紧下界),最大化小黑短线我们就hit到至少与似然函数刚好相等的位置,对应的横坐标就是我们的新的θ2,如此进行,只要保证随着θ的更新,每次最大化的小黑短线值都比上次的更大,那么算法收敛,最后就能最大化到似然函数的极大值处。

  构造这个小黑短线,就要靠Jensen不等式。注意我们这里的log函数是个凹函数,所以我们使用的Jensen不等式的凹函数版本。根据Jensen函数,需要把log里面的东西写成一个数学期望的形式,注意到log里的和是关于隐变量Z的和,于是自然而然,这个数学期望一定是和Z有关,如果设Q(z)是Z的分布函数,那么可以这样构造:

  这几句公式比较多,我不一一敲了,直接把我PPT里的内容截图过来:

  

  所以log里其实构造了一个随机变量Y,Y是Z的函数,Y取p/Q的值的概率是Q,这点说的很清楚了。

  构造好数学期望,下一步根据Jensen不等式进行放缩:

  

  有了这一步,我们看一下整个式子:

  

  也就是说我们找到了似然函数的一个下界,那么优化它是否就可以呢?不是的,上面说了必须保证这个下界是紧的,也就是至少有点能使等号成立。由Jensen不等式,等式成立的条件是随机变量是常数,具体到这里,就是:

    

  又因为Q(z)是z的分布函数,所以:

  把C乘过去,可得C就是p(xi,z)对z求和,所以我们终于知道了:

  

  得到Q(z),大功告成,Q(z)就是p(zi|xi),或者写成p(zi),都是一回事,代表第i个数据是来自zi的概率。

  于是EM算法出炉,它是这样做的:

  首先,初始化参数θ

  (1)E-Step:根据参数θ计算每个样本属于zi的概率,即这个身高来自四川或东北的概率,这个概率就是Q

  (2)M-Step:根据计算得到的Q,求出含有θ的似然函数的下界并最大化它,得到新的参数θ

  重复(1)和(2)直到收敛,可以看到,从思想上来说,和最开始没什么两样,只不过直接最大化似然函数不好做,曲线救国而已。

  至于为什么这样的迭代会保证似然函数单调不减,即EM算法的收敛性证明,我就先不写了,以后有时间再考虑补。需要额外说明的是,EM算法在一般情况是收敛的,但是不保证收敛到全局最优,即有可能进入局部的最优。EM算法在混合高斯模型,隐马尔科夫模型中都有应用,是著名的数据挖掘十大算法之一。

转自:https://www.cnblogs.com/bigmoyan/p/4550375.html

超详细的EM算法理解的更多相关文章

  1. EM算法理解的九层境界

    EM算法理解的九层境界 EM 就是 E + M EM 是一种局部下限构造 K-Means是一种Hard EM算法 从EM 到 广义EM 广义EM的一个特例是VBEM 广义EM的另一个特例是WS算法 广 ...

  2. EM算法理解

    一.概述 概率模型有时既含有观测变量,又含有隐变量,如果概率模型的变量都是观测变量,那么给定数据,可以直接利用极大似然估计法或者贝叶斯估计法估计模型参数.但是,当模型同时又含有隐变量时,就不能简单地使 ...

  3. Machine Learning系列--EM算法理解与推导

    EM算法,全称Expectation Maximization Algorithm,译作最大期望化算法或期望最大算法,是机器学习十大算法之一,吴军博士在<数学之美>书中称其为“上帝视角”算 ...

  4. EM算法浅析(一)-问题引出

    EM算法浅析,我准备写一个系列的文章: EM算法浅析(一)-问题引出 EM算法浅析(二)-算法初探 一.基本认识 EM(Expectation Maximization Algorithm)算法即期望 ...

  5. EM算法-完整推导

    前篇已经对EM过程,举了扔硬币和高斯分布等案例来直观认识了, 目标是参数估计, 分为 E-step 和 M-step, 不断循环, 直到收敛则求出了近似的估计参数, 不多说了, 本篇不说栗子, 直接来 ...

  6. EM算法 学习笔记

    转载请注明出处: http://www.cnblogs.com/gufeiyang 首先考虑这么一个问题.操场东边有100个男生,他们的身高符合高斯分布.操场西边有100个女生,她们的身高也符合高斯分 ...

  7. 数据挖掘领域十大经典算法之—C4.5算法(超详细附代码)

    https://blog.csdn.net/fuqiuai/article/details/79456971 相关文章: 数据挖掘领域十大经典算法之—K-Means算法(超详细附代码)        ...

  8. 【机器学习】EM算法详细推导和讲解

    今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教. 众所周知,极大似然估计是一种应用很广泛的参数估计方法.例如我手头有一些东北人的身高的 ...

  9. 如何感性地理解EM算法?

    https://www.jianshu.com/p/1121509ac1dc 如果使用基于最大似然估计的模型,模型中存在隐变量,就要用EM算法做参数估计.个人认为,理解EM算法背后的idea,远比看懂 ...

随机推荐

  1. Pytest编写测试函数

    Pytest编写测试函数 一个规范的测试方法一定带有断言,在使用pytest时,可以直接使用Python自带的assert关键字 Pytest允许在assert关键字添加任意表达式,表达式的值通过bo ...

  2. Disconnected from the target VM, address: '127.0.0.1:56577', transport: 'socket'

    Disconnected from the target VM, address: '127.0.0.1:56577', transport: 'socket' Disconnected from t ...

  3. lvs+keepalived做高可用方案1

    本文我们主要讲解的是LVS通过keepalived来实现负载均衡和高可用,而不是我们第三篇文章介绍的通过手动的方式来进行配置.通过脚本的方式来显示RS节点的健康检查和LVS的故障切换.此文会通过一个实 ...

  4. K3CLOUD 常用数据表

    二.K3 Cloud 开发插件<K3 Cloud 常用数据表整理>一.数据库查询常用表 按 Ctrl+C 复制代码 按 Ctrl+C 复制代码 通过表T_META_OBJECTTYPE的F ...

  5. 【题解】[Usaco2007 Open]Catch That Cow 抓住那只牛-C++

    题目DescriptionFarmer John has been informed of the location of a fugitive cow and wants to catch her ...

  6. JAVA中的getBytes()方法

    在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组.这个表示在不同情况下,返回的东西不一样! String.getBytes(String decode)方 ...

  7. Crystal Report水晶报表碰到的一些纠结问题

    1.插入PNG文件时,透明的背景会变成黑色.试了矢量图WMF文件,是可以正常显示的,不过毕竟得到矢量图比较困难.   后来找到个方法,就是把JPG图片放在子报表里,调整子报表在父报表的位置并且保持JP ...

  8. oracle数据库外连接

    外连接作用:(左外连接和右外连接;注:没有全外连接) 希望把某些不成立的记录(40号部门),仍然包含在最后的结果中 左外连接:当where e.deptno=d.deptno不成立的时候,等号左边的表 ...

  9. [POI2010]MOT-Monotonicity 2

    洛谷题目链接 动态规划$+$线段树 题目链接(洛谷) 首先,先要明确一点,当我们填了第$i$位时,自然下一位的符号也就出来了 那么我们可以分情况讨论: $1.$当下一位是$>$时:我们可以建一棵 ...

  10. [Luogu] 消息扩散

    https://www.luogu.org/problemnew/show/2002 Tarjan 缩点 + 入度判断 #include <iostream> #include <c ...