PAT 1030 最短路最小边权 堆优化dijkstra+DFS

1030 Travel Plan (30 分)

A traveler's map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (≤500) is the number of cities (and hence the cities are numbered from 0 to N−1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:

City1 City2 Distance Cost

where the numbers are all integers no more than 500, and are separated by a space.

Output Specification:

For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.

Sample Input:

4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20

Sample Output:

0 2 3 3 40

题目大意:求起点到终点的最短路径最短距离和花费,要求首先路径最短,其次花费最少,要输出完整路径

分析:Dijksta + DFS。 Dijkstra记录路径pre数组,然后用dfs求最短的一条mincost以及它的路径path,最后输出path数组和mincost

注意路径path因为是从末端一直压入push_back到path里面的,所以要输出路径的时候倒着输出

关键是DFS的写法,应该是在一个链状的图数据结构上进行搜索,所以先加一个判断条件,如果到了起点就统计总长度,如果更小,更新anscost并更新path.注意这个时候仍然要pop_back(),没准还有一条更短的路径能够通向起点,之后dfs之后pop_back是常规操作.

void dfs(int v)
{
temppath.push_back(v);
if(v==from)
{
int tempcost=0;
for(int i=temppath.size()-1;i>=1;i--)
{
int id=temppath[i];
int nextid=temppath[i-1];
tempcost+=length[id][nextid];
}
if(tempcost<anscost)
{
path=temppath;
anscost=tempcost;
}
temppath.pop_back();//还得继续迭代呢,没准费用更小
return ;
}
for(int i=0;i<pre[v].size();i++)
{
dfs(pre[v][i]);
}
temppath.pop_back();
}
#include <iostream>
#include<bits/stdc++.h>
#define each(a,b,c) for(int a=b;a<=c;a++)
#define de(x) cout<<#x<<" "<<(x)<<endl
using namespace std; const int maxn=500+5;
const int inf=0x3f3f3f3f; int dis[maxn];
bool vis[maxn];
vector<int>pre[maxn];
vector<int>path,temppath;
int length[maxn][maxn]; struct Edge
{
int v;
int len;
int cost;
Edge(int v,int len,int cost):v(v),len(len),cost(cost){}
};
vector<Edge>G[maxn];
struct node
{
int v;
int len;
node(int v=0,int len=0):v(v),len(len){}
bool operator<(const node&r)const
{
return len>r.len;
}
};
void dijkstra(int n,int start)
{
each(i,0,n-1)
{
vis[i]=false;
dis[i]=inf; }
dis[start]=0;
priority_queue<node>Q;
node temp;
Q.push(node(start,0));
while(!Q.empty())
{
temp=Q.top();
Q.pop();
int u=temp.v;
if(vis[u])continue;
vis[u]=true;
for(int i=0;i<(int)G[u].size();i++)
{
int v=G[u][i].v;
int len=G[u][i].len;
int cost=G[u][i].cost;
if(!vis[v]&&dis[v]>dis[u]+len)
{
dis[v]=dis[u]+len;
pre[v].clear();
pre[v].push_back(u);
Q.push(node(v,dis[v]));
}
else if(!vis[v]&&dis[v]==dis[u]+len)///我佛拉
{
pre[v].push_back(u);
///需不需要push呢????????
} }
}
}
/*
4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20
*/
int n,m,from,to;
int anscost;
void dfs(int v)
{
temppath.push_back(v);
if(v==from)
{
int tempcost=0;
for(int i=temppath.size()-1;i>=1;i--)
{
int id=temppath[i];
int nextid=temppath[i-1];
tempcost+=length[id][nextid];
}
if(tempcost<anscost)
{
path=temppath;
anscost=tempcost;
}
temppath.pop_back();//还得继续迭代呢,没准费用更小
return ;
}
for(int i=0;i<pre[v].size();i++)
{
dfs(pre[v][i]);
}
temppath.pop_back();
}
int main()
{
anscost=inf;
cin>>n>>m>>from>>to;
while(m--)
{
int a,b,l,cost;
scanf("%d%d%d%d",&a,&b,&l,&cost);
G[a].push_back(Edge(b,l,cost));
G[b].push_back(Edge(a,l,cost));
length[a][b]=length[b][a]=cost;
}
dijkstra(n,from);
dfs(to);
for(int i=path.size()-1;i>=0;i--)
{
printf("%d ",path[i]);
}
printf("%d %d\n",dis[to],anscost);
return 0;
}

PAT-1030 Travel Plan (30 分) 最短路最小边权 堆优化dijkstra+DFS的更多相关文章

  1. PAT 甲级 1030 Travel Plan (30 分)(dijstra,较简单,但要注意是从0到n-1)

    1030 Travel Plan (30 分)   A traveler's map gives the distances between cities along the highways, to ...

  2. 【PAT甲级】1030 Travel Plan (30 分)(SPFA,DFS)

    题意: 输入N,M,S,D(N,M<=500,0<S,D<N),接下来M行输入一条边的起点,终点,通过时间和通过花费.求花费最小的最短路,输入这条路径包含起点终点,通过时间和通过花费 ...

  3. 1030 Travel Plan (30分)(dijkstra 具有多种决定因素)

    A traveler's map gives the distances between cities along the highways, together with the cost of ea ...

  4. PAT 1030 Travel Plan[图论][难]

    1030 Travel Plan (30)(30 分) A traveler's map gives the distances between cities along the highways, ...

  5. [图算法] 1030. Travel Plan (30)

    1030. Travel Plan (30) A traveler's map gives the distances between cities along the highways, toget ...

  6. PAT Advanced 1030 Travel Plan (30) [Dijkstra算法 + DFS,最短路径,边权]

    题目 A traveler's map gives the distances between cities along the highways, together with the cost of ...

  7. PAT甲题题解-1030. Travel Plan (30)-最短路+输出路径

    模板题最短路+输出路径如果最短路不唯一,输出cost最小的 #include <iostream> #include <cstdio> #include <algorit ...

  8. PAT A 1030. Travel Plan (30)【最短路径】

    https://www.patest.cn/contests/pat-a-practise/1030 找最短路,如果有多条找最小消耗的,相当于找两次最短路,可以直接dfs,数据小不会超时. #incl ...

  9. 1030 Travel Plan (30)(30 分)

    A traveler's map gives the distances between cities along the highways, together with the cost of ea ...

随机推荐

  1. MD5与SHA1

    一.MD5 MD5消息摘要算法(英语:MD5 Message-Digest Algorithm),一种被广泛使用的密码散列函数,可以产生出一个128位(16字节)的散列值(hash value),用于 ...

  2. 深入理解JS中&&和||

    写了这么多JS,才发现JS的语法既是属于C语系的,又与一般C语系的编程语言某些地方有很大区别,其中&&和||就是其中一例. C语系中的&&和|| C语系的&&a ...

  3. keep-alive 实现从列表页到详情页,然后再回到列表页并保持原来列表页的页码数,并且只刷新数据

    思路: keep-alive应用场景介绍 <keep-alive> 不会在函数式组件中正常工作,因为它们没有缓存实例.结合router,缓存部分页面 activated 和 deactiv ...

  4. Javascript事件派发-dispatchEvent

    事件派发的作用: 1.派发数据,将一个封闭模块中的数据传递给另一个封闭模块.2.事件完成了较为复杂的解耦. 事件和回调函数不同在于: 1.事件可以在任意地方去获取,而回调函数只能在一个地方存在,如果需 ...

  5. python动态导入模块——importlib

    当在写代码时,我们希望能够根据传入的选项设置,如args.model来确定要导入使用的是哪个model.py文件,而不是一股脑地导入 这种时候就需要用上python的动态导入模块 比如此时文件结构为: ...

  6. Java Audio : Playing PCM amplitude Array

    转载自:http://ganeshtiwaridotcomdotnp.blogspot.com/2011/12/java-audio-playing-pcm-amplitude-array.html ...

  7. akka java

    https://www.cnblogs.com/lixiang-share/p/5833846.html

  8. Swift细节记录<一>

    1.全局变量记录: import UIKit class HHTSwitchGlobalData: NSObject { var isWaiterAutoPop: Bool = true privat ...

  9. 【Leetcode_easy】993. Cousins in Binary Tree

    problem 993. Cousins in Binary Tree 参考 1. Leetcode_easy_993. Cousins in Binary Tree; 完

  10. 【Leetcode_easy】872. Leaf-Similar Trees

    problem 872. Leaf-Similar Trees 参考 1. Leetcode_easy_872. Leaf-Similar Trees; 完