PAT 1030 最短路最小边权 堆优化dijkstra+DFS

1030 Travel Plan (30 分)

A traveler's map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (≤500) is the number of cities (and hence the cities are numbered from 0 to N−1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:

City1 City2 Distance Cost

where the numbers are all integers no more than 500, and are separated by a space.

Output Specification:

For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.

Sample Input:

4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20

Sample Output:

0 2 3 3 40

题目大意:求起点到终点的最短路径最短距离和花费,要求首先路径最短,其次花费最少,要输出完整路径

分析:Dijksta + DFS。 Dijkstra记录路径pre数组,然后用dfs求最短的一条mincost以及它的路径path,最后输出path数组和mincost

注意路径path因为是从末端一直压入push_back到path里面的,所以要输出路径的时候倒着输出

关键是DFS的写法,应该是在一个链状的图数据结构上进行搜索,所以先加一个判断条件,如果到了起点就统计总长度,如果更小,更新anscost并更新path.注意这个时候仍然要pop_back(),没准还有一条更短的路径能够通向起点,之后dfs之后pop_back是常规操作.

void dfs(int v)
{
temppath.push_back(v);
if(v==from)
{
int tempcost=0;
for(int i=temppath.size()-1;i>=1;i--)
{
int id=temppath[i];
int nextid=temppath[i-1];
tempcost+=length[id][nextid];
}
if(tempcost<anscost)
{
path=temppath;
anscost=tempcost;
}
temppath.pop_back();//还得继续迭代呢,没准费用更小
return ;
}
for(int i=0;i<pre[v].size();i++)
{
dfs(pre[v][i]);
}
temppath.pop_back();
}
#include <iostream>
#include<bits/stdc++.h>
#define each(a,b,c) for(int a=b;a<=c;a++)
#define de(x) cout<<#x<<" "<<(x)<<endl
using namespace std; const int maxn=500+5;
const int inf=0x3f3f3f3f; int dis[maxn];
bool vis[maxn];
vector<int>pre[maxn];
vector<int>path,temppath;
int length[maxn][maxn]; struct Edge
{
int v;
int len;
int cost;
Edge(int v,int len,int cost):v(v),len(len),cost(cost){}
};
vector<Edge>G[maxn];
struct node
{
int v;
int len;
node(int v=0,int len=0):v(v),len(len){}
bool operator<(const node&r)const
{
return len>r.len;
}
};
void dijkstra(int n,int start)
{
each(i,0,n-1)
{
vis[i]=false;
dis[i]=inf; }
dis[start]=0;
priority_queue<node>Q;
node temp;
Q.push(node(start,0));
while(!Q.empty())
{
temp=Q.top();
Q.pop();
int u=temp.v;
if(vis[u])continue;
vis[u]=true;
for(int i=0;i<(int)G[u].size();i++)
{
int v=G[u][i].v;
int len=G[u][i].len;
int cost=G[u][i].cost;
if(!vis[v]&&dis[v]>dis[u]+len)
{
dis[v]=dis[u]+len;
pre[v].clear();
pre[v].push_back(u);
Q.push(node(v,dis[v]));
}
else if(!vis[v]&&dis[v]==dis[u]+len)///我佛拉
{
pre[v].push_back(u);
///需不需要push呢????????
} }
}
}
/*
4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20
*/
int n,m,from,to;
int anscost;
void dfs(int v)
{
temppath.push_back(v);
if(v==from)
{
int tempcost=0;
for(int i=temppath.size()-1;i>=1;i--)
{
int id=temppath[i];
int nextid=temppath[i-1];
tempcost+=length[id][nextid];
}
if(tempcost<anscost)
{
path=temppath;
anscost=tempcost;
}
temppath.pop_back();//还得继续迭代呢,没准费用更小
return ;
}
for(int i=0;i<pre[v].size();i++)
{
dfs(pre[v][i]);
}
temppath.pop_back();
}
int main()
{
anscost=inf;
cin>>n>>m>>from>>to;
while(m--)
{
int a,b,l,cost;
scanf("%d%d%d%d",&a,&b,&l,&cost);
G[a].push_back(Edge(b,l,cost));
G[b].push_back(Edge(a,l,cost));
length[a][b]=length[b][a]=cost;
}
dijkstra(n,from);
dfs(to);
for(int i=path.size()-1;i>=0;i--)
{
printf("%d ",path[i]);
}
printf("%d %d\n",dis[to],anscost);
return 0;
}

PAT-1030 Travel Plan (30 分) 最短路最小边权 堆优化dijkstra+DFS的更多相关文章

  1. PAT 甲级 1030 Travel Plan (30 分)(dijstra,较简单,但要注意是从0到n-1)

    1030 Travel Plan (30 分)   A traveler's map gives the distances between cities along the highways, to ...

  2. 【PAT甲级】1030 Travel Plan (30 分)(SPFA,DFS)

    题意: 输入N,M,S,D(N,M<=500,0<S,D<N),接下来M行输入一条边的起点,终点,通过时间和通过花费.求花费最小的最短路,输入这条路径包含起点终点,通过时间和通过花费 ...

  3. 1030 Travel Plan (30分)(dijkstra 具有多种决定因素)

    A traveler's map gives the distances between cities along the highways, together with the cost of ea ...

  4. PAT 1030 Travel Plan[图论][难]

    1030 Travel Plan (30)(30 分) A traveler's map gives the distances between cities along the highways, ...

  5. [图算法] 1030. Travel Plan (30)

    1030. Travel Plan (30) A traveler's map gives the distances between cities along the highways, toget ...

  6. PAT Advanced 1030 Travel Plan (30) [Dijkstra算法 + DFS,最短路径,边权]

    题目 A traveler's map gives the distances between cities along the highways, together with the cost of ...

  7. PAT甲题题解-1030. Travel Plan (30)-最短路+输出路径

    模板题最短路+输出路径如果最短路不唯一,输出cost最小的 #include <iostream> #include <cstdio> #include <algorit ...

  8. PAT A 1030. Travel Plan (30)【最短路径】

    https://www.patest.cn/contests/pat-a-practise/1030 找最短路,如果有多条找最小消耗的,相当于找两次最短路,可以直接dfs,数据小不会超时. #incl ...

  9. 1030 Travel Plan (30)(30 分)

    A traveler's map gives the distances between cities along the highways, together with the cost of ea ...

随机推荐

  1. 实现一个自己的IOC

    实现一个自己的IOC package com.IocExample; import java.lang.reflect.Constructor; import java.lang.reflect.In ...

  2. Grafana 在添加邮件和钉钉报警之后不报警的原因是没有重启grafana 不生效重启。

    即使在grafana页面上面添加也需要重启.配置邮件配置文件更需要重启. systemctl restart grafana-server.service

  3. springMVC Controller 参数映射

    springMVC 对参数为null或参数不为null的处理 - 小浩子的博客 - CSDN博客https://blog.csdn.net/change_on/article/details/7664 ...

  4. winddows rabbitmq安装与配置

    RabbitMQ是一个在AMQP协议标准基础上完整的,可复用的企业消息系统.它遵循Mozilla Public License开源协议,采用 Erlang 实现的工业级的消息队列(MQ)服务器,Rab ...

  5. js中const,var,let区别与用法(转)

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/qq_36784628/article/d ...

  6. 006-多线程-JUC线程池-并发测试程序

    一.java代码模拟并发 1.1.一次并发 单次并发测试 1.使用CountDownLatch 等待一个或多个线程一起执行 详细参看:007-多线程-锁-JUC锁-CountDownLatch-闭锁[ ...

  7. netty5心跳与阻塞性业务消息分发实例

    继续之前的例子(netty5心跳与业务消息分发实例),我们在NettyClientHandler把业务消息改为阻塞性的: package com.wlf.netty.nettyclient.handl ...

  8. Linux记录-批量安装软件服务(转载)

    #!/bin/bash # 安装函数 install(){    for soft in $*    do         echo "$soft"安装中...         y ...

  9. 【429】关于ADT的访问权限

    在看老师代码的时候,发现ADT中的 struct 有时候写到了 adt.c 里面,有时候写到了 adt.h 里面,其实有些困惑,经过仔细研究,发现写在 adt.h 中的 struct 可以在 test ...

  10. sqoop import mysql to hive table:GC overhead limit exceeded

    1. Scenario description when I use sqoop to import mysql table into hive, I got the following error: ...