import numpy as np
import pandas as pd

Data contained in pandas objects can be combined together in a number of ways:

  • pandas.merge connects rows in DataFrame based on one or more keys. This will be familiar to users of SQL or other relational databases, as it impliemnts(工具) database join oprations.

  • pandas.concat concatenates or "stacks" together objects along an axis.

  • The combine_first instance method enables splicing(拼接) together overlapping data to fill in missing values in one object with values from another.

I will address each of these and give a number of examples. They'll be utilized in examples throughout the rest of the book.

SQL风格的Join

merge or join operations combine datasets by linking rows using one or more keys. These operations are central to relational database(e.g. SQL-based). The merge function in pandas is the main entry point for using theses algorithms on your data.

Let's start with a simple example:

df1 = pd.DataFrame({
'key': 'b, b, a, c, a, a, b'.split(','),
'data1': range(7)
}) df2 = pd.DataFrame({
'key': ['a', 'b', 'd'],
'data2': range(3)
}) df1
df2

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data1
0 b 0
1 b 1
2 a 2
3 c 3
4 a 4
5 a 5
6 b 6

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data2
0 a 0
1 b 1
2 d 2

This is an example of a many to one join; the data in df1 has multiple rows labeled a and b, whereas(然而) df2 has only one row for each value in the key column. Calling merge with these objects we obtain:

"merge 默认是内连接, if 没有指定key..."
pd.merge(df1, df2) # data1, key, data2
'merge 默认是内连接, if 没有指定key...'

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data1 data2
0 b 0 1

Note that I didn't specify which columns to join on. if that infomation is not specified, merge uses the overlapping columns names as keys. It's a good practice to specify explicitly, though:

(cj. 好像不是这样的哦)

"内连接走一波, 相同的记录才会保留哦, 跟作者的不一样"
pd.merge(df2, df1, on='key') # data1, key, data2
'内连接走一波, 相同的记录才会保留哦, 跟作者的不一样'

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data2 data1
0 b 1 0
# cj test
pd.merge(df1, df2, on='key', how='left')

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data1 data2
0 b 0 1.0
1 b 1 NaN
2 a 2 NaN
3 c 3 NaN
4 a 4 NaN
5 a 5 NaN
6 b 6 NaN

If the column names are different in each object, you can specify them separately:

(两个df的键不同, 进行合并时可以分别指定)

df3 = pd.DataFrame({
'lkey': 'a b a c a a b'.split(),
'data1': range(7)
}) df4 = pd.DataFrame({
'rkey': ['a', 'b', 'd'],
'data2': range(3)
}) pd.merge(df3, df4, left_on='lkey', right_on='rkey')

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
lkey data1 rkey data2
0 a 0 a 0
1 a 2 a 0
2 a 4 a 0
3 a 5 a 0
4 b 1 b 1
5 b 6 b 1

You may notice that the 'c' and 'd' values and associate data are missing from the result. By defualt merge does an inner join; the keys in the result are intersection. or the common set found in both tables. Other possible options are left, right and outer. The outer join takes the union of the keys, combining the effect of applying both left and right joins.

(merge 默认是内连接, 相关的还有左, 右, 外连接;

外连接是包含了左,右连接哦)

"默认以所有的键, 其实就是穷举所有的可能结果而已"
pd.merge(df1, df2, how='outer')
'默认以所有的键, 其实就是穷举所有的可能结果而已'

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data1 data2
0 b 0.0 1.0
1 b 1.0 NaN
2 b 6.0 NaN
3 a 2.0 NaN
4 a 4.0 NaN
5 a 5.0 NaN
6 c 3.0 NaN
7 a NaN 0.0
8 d NaN 2.0

See Table 8-1 for a summary of the options for how.

Option Behavior
'inner' Use only the key combinations observed in both tables
'left' Use all combinations found in the left table
'right' Use all key combinations found in the right table
'outer' Use all key combinations observed in both tables together

Many-to-Many merges have well-defined, though not necessarily intuitive(直觉的), behavior. Here's an example:

df1 = pd.DataFrame({
'key': 'b b a c a b'.split(),
'data1': range(6)
}) df2 = pd.DataFrame({
'key': 'a b a b d'.split(),
'data2': range(5)
}) df1
df2

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data1
0 b 0
1 b 1
2 a 2
3 c 3
4 a 4
5 b 5

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data2
0 a 0
1 b 1
2 a 2
3 b 3
4 d 4
pd.merge(df1, df2, how='inner')

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data1 data2
0 b 0 1
1 b 0 3
2 b 1 1
3 b 1 3
4 b 5 1
5 b 5 3
6 a 2 0
7 a 2 2
8 a 4 0
9 a 4 2
pd.merge(df1, df2, on='key', how='left')

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data1 data2
0 b 0 1.0
1 b 0 3.0
2 b 1 1.0
3 b 1 3.0
4 a 2 0.0
5 a 2 2.0
6 c 3 NaN
7 a 4 0.0
8 a 4 2.0
9 b 5 1.0
10 b 5 3.0

To merge with multiple keys, pass a list of columns names:

left = pd.DataFrame({'key1': ['foo', 'foo', 'bar'],
'key2': ['one', 'two', 'one'],
'lval': [1, 2, 3]}) right = pd.DataFrame({'key1': ['foo', 'foo', 'bar', 'bar'],
'key2': ['one', 'one', 'one', 'two'],
'rval': [4, 5, 6, 7]}) left
right

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key1 key2 lval
0 foo one 1
1 foo two 2
2 bar one 3

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key1 key2 rval
0 foo one 4
1 foo one 5
2 bar one 6
3 bar two 7
"outer 所有可能的结果, 支持多个keys"

pd.merge(left, right, on=['key1', 'key2'], how='outer')
'outer 所有可能的结果, 支持多个keys'

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key1 key2 lval rval
0 foo one 1.0 4.0
1 foo one 1.0 5.0
2 foo two 2.0 NaN
3 bar one 3.0 6.0
4 bar two NaN 7.0

To determine which key combinations will appear in the result depending on the choice of merge method, think of the multiple keys as forming an array fo tuples to be used as a single join key.

When you are joining columns-on-columns, the indexes on the passed DataFrame objects are discarded.

pd.merge(left, right, on='key1')

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key1 key2_x lval key2_y rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo two 2 one 4
3 foo two 2 one 5
4 bar one 3 one 6
5 bar one 3 two 7
pd.merge(left, right, on='key1', suffixes=('_left', '_right'))

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key1 key2_left lval key2_right rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo two 2 one 4
3 foo two 2 one 5
4 bar one 3 one 6
5 bar one 3 two 7

See Table 8-2 for an argument reference on merge. Joining using the DataFrame's row index is the subject of the next section.

  • left
  • right
  • how
  • on
  • left_on
  • right_on
  • left_index
  • right_index
  • sort
  • suffixes 添加后缀
  • copy
  • indecator

按Index合并

In some cases, the merge key(s) in a DataFrame will be found on its index, In this case, you can pass left_index=True or right_index=True to indicate that the index should be used as the merge key:

left1 = pd.DataFrame({
'key': ['a', 'b', 'a', 'a', 'b', 'c'],
'value': range(6)
}) right1 = pd.DataFrame({'group_val':[3.5, 7]}, index=['a', 'b']) left1
right1

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key value
0 a 0
1 b 1
2 a 2
3 a 3
4 b 4
5 c 5

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
group_val
a 3.5
b 7.0
pd.merge(left1, right1, left_on='key', right_index=True)

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key value group_val
0 a 0 3.5
2 a 2 3.5
3 a 3 3.5
1 b 1 7.0
4 b 4 7.0

按轴水平/垂直合并

Another kind of data combination operation is referred to interchangeably as concat-enation, binding, or stacking, NumPy's concatenate function can do this with NumPy arrays:

arr = np.arange(12).reshape((3,4))

arr
array([[ 0,  1,  2,  3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
"直接水平拼接"

np.concatenate([arr, arr], axis=1)
'直接水平拼接'

array([[ 0,  1,  2,  3,  0,  1,  2,  3],
[ 4, 5, 6, 7, 4, 5, 6, 7],
[ 8, 9, 10, 11, 8, 9, 10, 11]])

不再继续往下扩展了, 就目前我工作中用得最多的还是Merge, Join,在处理表vlookup的场景下.还有就是涉及垂直/水平拼接的 pd.concat(), np.vstack() 和 np.hstack(), 结合SQL来配合使用,就非常灵活和高效了.

pandas 之 数据合并的更多相关文章

  1. 利用Python进行数据分析(12) pandas基础: 数据合并

    pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...

  2. 数据分析入门——pandas之数据合并

    主要分为:级联:pd.concat.pd.append 合并:pd.merge 一.numpy级联的回顾 详细参考numpy章节 https://www.cnblogs.com/jiangbei/p/ ...

  3. python 数据合并

    1. 数据合并 前言 一.横向合并 1. 基本合并语句 2. 键值名不一样的合并 3. “两个数据列名字重复了”的合并 二.纵向堆叠 统计师的Python日记[第6天:数据合并] 前言 根据我的Pyt ...

  4. pandas学习(数据分组与分组运算、离散化处理、数据合并)

    pandas学习(数据分组与分组运算.离散化处理.数据合并) 目录 数据分组与分组运算 离散化处理 数据合并 数据分组与分组运算 GroupBy技术:实现数据的分组,和分组运算,作用类似于数据透视表 ...

  5. PANDAS 数据合并与重塑(join/merge篇)

    pandas中也常常用到的join 和merge方法 merge pandas的merge方法提供了一种类似于SQL的内存链接操作,官网文档提到它的性能会比其他开源语言的数据操作(例如R)要高效. 和 ...

  6. pandas:根据行间差值进行数据合并

    1. 问题描述 在处理用户上网数据时,用户的上网行为数据之间存在时间间隔,按照实际情况,若时间间隔小于阈值(next_access_time_app),则可把这几条上网行为合并为一条行为数据:若时间间 ...

  7. python 数据清洗之数据合并、转换、过滤、排序

    前面我们用pandas做了一些基本的操作,接下来进一步了解数据的操作, 数据清洗一直是数据分析中极为重要的一个环节. 数据合并 在pandas中可以通过merge对数据进行合并操作. import n ...

  8. R︱高效数据操作——data.table包(实战心得、dplyr对比、key灵活用法、数据合并)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 由于业务中接触的数据量很大,于是不得不转战开始 ...

  9. 使用pandas进行数据预处理01

    数据预处理有四种技术:数据合并,数据清洗,数据标准化,以及数据转换. 数据合并技术:(1)横向或纵向堆叠合数据 (2)主键合并数据 (3)重叠合并数据 1.堆叠合并数据: 堆叠就是简单的把两个表拼接在 ...

随机推荐

  1. Pandas | 07 函数应用

    要将自定义或其他库的函数应用于Pandas对象,有三个重要的方法,下面来讨论如何使用这些方法.使用适当的方法取决于函数应用于哪个层面(DataFrame,行或列或元素). 表合理函数应用:pipe() ...

  2. JQuery校验时间大小

    常用于按时间条件(起始日-截止日)查询时,进行校验 function checkDate(){ var startTime = $('#startTime').val(); var endTime = ...

  3. sass、less异同

    相同点: 1.混入(Mixins):class中的class 2.参数混入:可以传递参数的class,就像函数一样 3.嵌套规则:class中嵌套class,从而减少重复的代码 4.运算:css中用上 ...

  4. django命名url与url反向解析

    1.在urls.py路由中指定别名 2.在views.py视图文件中导入from django.shortcuts import render, redirect, reverse 3.也可从这里导入 ...

  5. javaScript与css、html常见的兼容

    最近几天总是遇到兼容问题,就整理了一下javaScript和html.css出现的常见兼容.有不全面或不对的欢迎大家指正.也希望这条博客可以帮到一些刚学习的前端的朋友. 一.javaScript出现的 ...

  6. HTML5 - websocket的应用 之 简易聊天室

    需要知识点: 前端知识 jq操作dom nodejs socket.io 关于websocket api的知识点,见上篇章<HTML5-Websocket>. 聊天室思路/原理: A和B聊 ...

  7. nginx1.16+php7.39配置笔记

    vim /etc/nginx/conf.d/default.conf 修改php相关配置如下: location ~ \.php$ {        root           /usr/share ...

  8. http 默认端口

    80是http协议的默认端口,是在输入网站的时候其实浏览器(非IE)已经帮你输入协议了,所以你输入http://baidu.com,其实是访问http://baidu.com:80.而8080,一般用 ...

  9. 【操作系统之七】Linux常用命令之tail

    一.概念linux tail命令用途是按照要求将指定的文件的最后部分输出到标准设备,一般是终端,就是把某个档案文件的最后几行显示到终端上,如果该档案有更新,tail会自动刷新,确保你看到最新的档案内容 ...

  10. 统计numpy数组中每个值出现的个数

    统计numpy数组中某一个值或某几个值出现的个数:sum(data==4) # 统计出现了几个cluster include0Cluster = sum(res == 0) include1Clust ...