import numpy as np
import pandas as pd

Data contained in pandas objects can be combined together in a number of ways:

  • pandas.merge connects rows in DataFrame based on one or more keys. This will be familiar to users of SQL or other relational databases, as it impliemnts(工具) database join oprations.

  • pandas.concat concatenates or "stacks" together objects along an axis.

  • The combine_first instance method enables splicing(拼接) together overlapping data to fill in missing values in one object with values from another.

I will address each of these and give a number of examples. They'll be utilized in examples throughout the rest of the book.

SQL风格的Join

merge or join operations combine datasets by linking rows using one or more keys. These operations are central to relational database(e.g. SQL-based). The merge function in pandas is the main entry point for using theses algorithms on your data.

Let's start with a simple example:

df1 = pd.DataFrame({
'key': 'b, b, a, c, a, a, b'.split(','),
'data1': range(7)
}) df2 = pd.DataFrame({
'key': ['a', 'b', 'd'],
'data2': range(3)
}) df1
df2

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data1
0 b 0
1 b 1
2 a 2
3 c 3
4 a 4
5 a 5
6 b 6

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data2
0 a 0
1 b 1
2 d 2

This is an example of a many to one join; the data in df1 has multiple rows labeled a and b, whereas(然而) df2 has only one row for each value in the key column. Calling merge with these objects we obtain:

"merge 默认是内连接, if 没有指定key..."
pd.merge(df1, df2) # data1, key, data2
'merge 默认是内连接, if 没有指定key...'

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data1 data2
0 b 0 1

Note that I didn't specify which columns to join on. if that infomation is not specified, merge uses the overlapping columns names as keys. It's a good practice to specify explicitly, though:

(cj. 好像不是这样的哦)

"内连接走一波, 相同的记录才会保留哦, 跟作者的不一样"
pd.merge(df2, df1, on='key') # data1, key, data2
'内连接走一波, 相同的记录才会保留哦, 跟作者的不一样'

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data2 data1
0 b 1 0
# cj test
pd.merge(df1, df2, on='key', how='left')

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data1 data2
0 b 0 1.0
1 b 1 NaN
2 a 2 NaN
3 c 3 NaN
4 a 4 NaN
5 a 5 NaN
6 b 6 NaN

If the column names are different in each object, you can specify them separately:

(两个df的键不同, 进行合并时可以分别指定)

df3 = pd.DataFrame({
'lkey': 'a b a c a a b'.split(),
'data1': range(7)
}) df4 = pd.DataFrame({
'rkey': ['a', 'b', 'd'],
'data2': range(3)
}) pd.merge(df3, df4, left_on='lkey', right_on='rkey')

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
lkey data1 rkey data2
0 a 0 a 0
1 a 2 a 0
2 a 4 a 0
3 a 5 a 0
4 b 1 b 1
5 b 6 b 1

You may notice that the 'c' and 'd' values and associate data are missing from the result. By defualt merge does an inner join; the keys in the result are intersection. or the common set found in both tables. Other possible options are left, right and outer. The outer join takes the union of the keys, combining the effect of applying both left and right joins.

(merge 默认是内连接, 相关的还有左, 右, 外连接;

外连接是包含了左,右连接哦)

"默认以所有的键, 其实就是穷举所有的可能结果而已"
pd.merge(df1, df2, how='outer')
'默认以所有的键, 其实就是穷举所有的可能结果而已'

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data1 data2
0 b 0.0 1.0
1 b 1.0 NaN
2 b 6.0 NaN
3 a 2.0 NaN
4 a 4.0 NaN
5 a 5.0 NaN
6 c 3.0 NaN
7 a NaN 0.0
8 d NaN 2.0

See Table 8-1 for a summary of the options for how.

Option Behavior
'inner' Use only the key combinations observed in both tables
'left' Use all combinations found in the left table
'right' Use all key combinations found in the right table
'outer' Use all key combinations observed in both tables together

Many-to-Many merges have well-defined, though not necessarily intuitive(直觉的), behavior. Here's an example:

df1 = pd.DataFrame({
'key': 'b b a c a b'.split(),
'data1': range(6)
}) df2 = pd.DataFrame({
'key': 'a b a b d'.split(),
'data2': range(5)
}) df1
df2

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data1
0 b 0
1 b 1
2 a 2
3 c 3
4 a 4
5 b 5

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data2
0 a 0
1 b 1
2 a 2
3 b 3
4 d 4
pd.merge(df1, df2, how='inner')

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data1 data2
0 b 0 1
1 b 0 3
2 b 1 1
3 b 1 3
4 b 5 1
5 b 5 3
6 a 2 0
7 a 2 2
8 a 4 0
9 a 4 2
pd.merge(df1, df2, on='key', how='left')

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data1 data2
0 b 0 1.0
1 b 0 3.0
2 b 1 1.0
3 b 1 3.0
4 a 2 0.0
5 a 2 2.0
6 c 3 NaN
7 a 4 0.0
8 a 4 2.0
9 b 5 1.0
10 b 5 3.0

To merge with multiple keys, pass a list of columns names:

left = pd.DataFrame({'key1': ['foo', 'foo', 'bar'],
'key2': ['one', 'two', 'one'],
'lval': [1, 2, 3]}) right = pd.DataFrame({'key1': ['foo', 'foo', 'bar', 'bar'],
'key2': ['one', 'one', 'one', 'two'],
'rval': [4, 5, 6, 7]}) left
right

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key1 key2 lval
0 foo one 1
1 foo two 2
2 bar one 3

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key1 key2 rval
0 foo one 4
1 foo one 5
2 bar one 6
3 bar two 7
"outer 所有可能的结果, 支持多个keys"

pd.merge(left, right, on=['key1', 'key2'], how='outer')
'outer 所有可能的结果, 支持多个keys'

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key1 key2 lval rval
0 foo one 1.0 4.0
1 foo one 1.0 5.0
2 foo two 2.0 NaN
3 bar one 3.0 6.0
4 bar two NaN 7.0

To determine which key combinations will appear in the result depending on the choice of merge method, think of the multiple keys as forming an array fo tuples to be used as a single join key.

When you are joining columns-on-columns, the indexes on the passed DataFrame objects are discarded.

pd.merge(left, right, on='key1')

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key1 key2_x lval key2_y rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo two 2 one 4
3 foo two 2 one 5
4 bar one 3 one 6
5 bar one 3 two 7
pd.merge(left, right, on='key1', suffixes=('_left', '_right'))

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key1 key2_left lval key2_right rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo two 2 one 4
3 foo two 2 one 5
4 bar one 3 one 6
5 bar one 3 two 7

See Table 8-2 for an argument reference on merge. Joining using the DataFrame's row index is the subject of the next section.

  • left
  • right
  • how
  • on
  • left_on
  • right_on
  • left_index
  • right_index
  • sort
  • suffixes 添加后缀
  • copy
  • indecator

按Index合并

In some cases, the merge key(s) in a DataFrame will be found on its index, In this case, you can pass left_index=True or right_index=True to indicate that the index should be used as the merge key:

left1 = pd.DataFrame({
'key': ['a', 'b', 'a', 'a', 'b', 'c'],
'value': range(6)
}) right1 = pd.DataFrame({'group_val':[3.5, 7]}, index=['a', 'b']) left1
right1

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key value
0 a 0
1 b 1
2 a 2
3 a 3
4 b 4
5 c 5

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
group_val
a 3.5
b 7.0
pd.merge(left1, right1, left_on='key', right_index=True)

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key value group_val
0 a 0 3.5
2 a 2 3.5
3 a 3 3.5
1 b 1 7.0
4 b 4 7.0

按轴水平/垂直合并

Another kind of data combination operation is referred to interchangeably as concat-enation, binding, or stacking, NumPy's concatenate function can do this with NumPy arrays:

arr = np.arange(12).reshape((3,4))

arr
array([[ 0,  1,  2,  3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
"直接水平拼接"

np.concatenate([arr, arr], axis=1)
'直接水平拼接'

array([[ 0,  1,  2,  3,  0,  1,  2,  3],
[ 4, 5, 6, 7, 4, 5, 6, 7],
[ 8, 9, 10, 11, 8, 9, 10, 11]])

不再继续往下扩展了, 就目前我工作中用得最多的还是Merge, Join,在处理表vlookup的场景下.还有就是涉及垂直/水平拼接的 pd.concat(), np.vstack() 和 np.hstack(), 结合SQL来配合使用,就非常灵活和高效了.

pandas 之 数据合并的更多相关文章

  1. 利用Python进行数据分析(12) pandas基础: 数据合并

    pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...

  2. 数据分析入门——pandas之数据合并

    主要分为:级联:pd.concat.pd.append 合并:pd.merge 一.numpy级联的回顾 详细参考numpy章节 https://www.cnblogs.com/jiangbei/p/ ...

  3. python 数据合并

    1. 数据合并 前言 一.横向合并 1. 基本合并语句 2. 键值名不一样的合并 3. “两个数据列名字重复了”的合并 二.纵向堆叠 统计师的Python日记[第6天:数据合并] 前言 根据我的Pyt ...

  4. pandas学习(数据分组与分组运算、离散化处理、数据合并)

    pandas学习(数据分组与分组运算.离散化处理.数据合并) 目录 数据分组与分组运算 离散化处理 数据合并 数据分组与分组运算 GroupBy技术:实现数据的分组,和分组运算,作用类似于数据透视表 ...

  5. PANDAS 数据合并与重塑(join/merge篇)

    pandas中也常常用到的join 和merge方法 merge pandas的merge方法提供了一种类似于SQL的内存链接操作,官网文档提到它的性能会比其他开源语言的数据操作(例如R)要高效. 和 ...

  6. pandas:根据行间差值进行数据合并

    1. 问题描述 在处理用户上网数据时,用户的上网行为数据之间存在时间间隔,按照实际情况,若时间间隔小于阈值(next_access_time_app),则可把这几条上网行为合并为一条行为数据:若时间间 ...

  7. python 数据清洗之数据合并、转换、过滤、排序

    前面我们用pandas做了一些基本的操作,接下来进一步了解数据的操作, 数据清洗一直是数据分析中极为重要的一个环节. 数据合并 在pandas中可以通过merge对数据进行合并操作. import n ...

  8. R︱高效数据操作——data.table包(实战心得、dplyr对比、key灵活用法、数据合并)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 由于业务中接触的数据量很大,于是不得不转战开始 ...

  9. 使用pandas进行数据预处理01

    数据预处理有四种技术:数据合并,数据清洗,数据标准化,以及数据转换. 数据合并技术:(1)横向或纵向堆叠合数据 (2)主键合并数据 (3)重叠合并数据 1.堆叠合并数据: 堆叠就是简单的把两个表拼接在 ...

随机推荐

  1. Linux系统中python默认版本为python2.7,修改为python3 项目上传码云

    # 查询系统本系统中安装的python版本 ls -l /usr/bin/python* 1.在虚拟机上新建虚拟环境 # 系统中python默认版本为python2.,可以将其修改为python3 # ...

  2. 【BZOJ3569】DZY Loves Chinese II

    [BZOJ3569]DZY Loves Chinese II 题面 bzoj 题目大意: 给你一张\(N(1\leq N\leq 10^5)\)个点\(M(1\leq M\leq 5\times 10 ...

  3. js规范思维导图(仅限于自己)

  4. 箭头函数的this指向

    es6的箭头函数中this指向是跟普通function中的this指向不同的,普通function的this指向取决于调用function的对象, 而箭头函数的this指向取决于声明它的对象,看下面这 ...

  5. haproxy 配置文件详解 之 listen

    配置示例: listen admin_stats bind mode http log 127.0.0.1 local0 err stats refresh 30s stats uri /haprox ...

  6. springboot自定义页面拦截

    项目结构图 页面拦截代码 @Configuration public class WebConfig implements WebMvcConfigurer { @Override public vo ...

  7. 安装-supervisor

    centos 7.xx 1.#yum install python-setuptools 2.#easy_install supervisor 3.# vim /etc/supervisord.con ...

  8. concurrent (二)AQS

    参考文档: https://www.cnblogs.com/waterystone/p/4920797.html

  9. spring boot 从开发到部署(二)—重启服务

    上篇中,我们开发并部署上线了一个 spring boot 项目.现在需要编写服务重启脚本,保证服务器重启后能够自动的运行我们的项目. /home/web/sprint-web/restart-happ ...

  10. StringToKenizer和Scanner的区别

    相同点: StringToKenizer类和Scanner类都可用于分解字符序列中的单词! 不同点: StringToKenizer类把分解出的全部字符串都存放到StringToKenizer对象的实 ...