import numpy as np
import pandas as pd

Data contained in pandas objects can be combined together in a number of ways:

  • pandas.merge connects rows in DataFrame based on one or more keys. This will be familiar to users of SQL or other relational databases, as it impliemnts(工具) database join oprations.

  • pandas.concat concatenates or "stacks" together objects along an axis.

  • The combine_first instance method enables splicing(拼接) together overlapping data to fill in missing values in one object with values from another.

I will address each of these and give a number of examples. They'll be utilized in examples throughout the rest of the book.

SQL风格的Join

merge or join operations combine datasets by linking rows using one or more keys. These operations are central to relational database(e.g. SQL-based). The merge function in pandas is the main entry point for using theses algorithms on your data.

Let's start with a simple example:

df1 = pd.DataFrame({
'key': 'b, b, a, c, a, a, b'.split(','),
'data1': range(7)
}) df2 = pd.DataFrame({
'key': ['a', 'b', 'd'],
'data2': range(3)
}) df1
df2

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data1
0 b 0
1 b 1
2 a 2
3 c 3
4 a 4
5 a 5
6 b 6

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data2
0 a 0
1 b 1
2 d 2

This is an example of a many to one join; the data in df1 has multiple rows labeled a and b, whereas(然而) df2 has only one row for each value in the key column. Calling merge with these objects we obtain:

"merge 默认是内连接, if 没有指定key..."
pd.merge(df1, df2) # data1, key, data2
'merge 默认是内连接, if 没有指定key...'

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data1 data2
0 b 0 1

Note that I didn't specify which columns to join on. if that infomation is not specified, merge uses the overlapping columns names as keys. It's a good practice to specify explicitly, though:

(cj. 好像不是这样的哦)

"内连接走一波, 相同的记录才会保留哦, 跟作者的不一样"
pd.merge(df2, df1, on='key') # data1, key, data2
'内连接走一波, 相同的记录才会保留哦, 跟作者的不一样'

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data2 data1
0 b 1 0
# cj test
pd.merge(df1, df2, on='key', how='left')

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data1 data2
0 b 0 1.0
1 b 1 NaN
2 a 2 NaN
3 c 3 NaN
4 a 4 NaN
5 a 5 NaN
6 b 6 NaN

If the column names are different in each object, you can specify them separately:

(两个df的键不同, 进行合并时可以分别指定)

df3 = pd.DataFrame({
'lkey': 'a b a c a a b'.split(),
'data1': range(7)
}) df4 = pd.DataFrame({
'rkey': ['a', 'b', 'd'],
'data2': range(3)
}) pd.merge(df3, df4, left_on='lkey', right_on='rkey')

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
lkey data1 rkey data2
0 a 0 a 0
1 a 2 a 0
2 a 4 a 0
3 a 5 a 0
4 b 1 b 1
5 b 6 b 1

You may notice that the 'c' and 'd' values and associate data are missing from the result. By defualt merge does an inner join; the keys in the result are intersection. or the common set found in both tables. Other possible options are left, right and outer. The outer join takes the union of the keys, combining the effect of applying both left and right joins.

(merge 默认是内连接, 相关的还有左, 右, 外连接;

外连接是包含了左,右连接哦)

"默认以所有的键, 其实就是穷举所有的可能结果而已"
pd.merge(df1, df2, how='outer')
'默认以所有的键, 其实就是穷举所有的可能结果而已'

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data1 data2
0 b 0.0 1.0
1 b 1.0 NaN
2 b 6.0 NaN
3 a 2.0 NaN
4 a 4.0 NaN
5 a 5.0 NaN
6 c 3.0 NaN
7 a NaN 0.0
8 d NaN 2.0

See Table 8-1 for a summary of the options for how.

Option Behavior
'inner' Use only the key combinations observed in both tables
'left' Use all combinations found in the left table
'right' Use all key combinations found in the right table
'outer' Use all key combinations observed in both tables together

Many-to-Many merges have well-defined, though not necessarily intuitive(直觉的), behavior. Here's an example:

df1 = pd.DataFrame({
'key': 'b b a c a b'.split(),
'data1': range(6)
}) df2 = pd.DataFrame({
'key': 'a b a b d'.split(),
'data2': range(5)
}) df1
df2

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data1
0 b 0
1 b 1
2 a 2
3 c 3
4 a 4
5 b 5

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data2
0 a 0
1 b 1
2 a 2
3 b 3
4 d 4
pd.merge(df1, df2, how='inner')

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data1 data2
0 b 0 1
1 b 0 3
2 b 1 1
3 b 1 3
4 b 5 1
5 b 5 3
6 a 2 0
7 a 2 2
8 a 4 0
9 a 4 2
pd.merge(df1, df2, on='key', how='left')

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key data1 data2
0 b 0 1.0
1 b 0 3.0
2 b 1 1.0
3 b 1 3.0
4 a 2 0.0
5 a 2 2.0
6 c 3 NaN
7 a 4 0.0
8 a 4 2.0
9 b 5 1.0
10 b 5 3.0

To merge with multiple keys, pass a list of columns names:

left = pd.DataFrame({'key1': ['foo', 'foo', 'bar'],
'key2': ['one', 'two', 'one'],
'lval': [1, 2, 3]}) right = pd.DataFrame({'key1': ['foo', 'foo', 'bar', 'bar'],
'key2': ['one', 'one', 'one', 'two'],
'rval': [4, 5, 6, 7]}) left
right

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key1 key2 lval
0 foo one 1
1 foo two 2
2 bar one 3

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key1 key2 rval
0 foo one 4
1 foo one 5
2 bar one 6
3 bar two 7
"outer 所有可能的结果, 支持多个keys"

pd.merge(left, right, on=['key1', 'key2'], how='outer')
'outer 所有可能的结果, 支持多个keys'

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key1 key2 lval rval
0 foo one 1.0 4.0
1 foo one 1.0 5.0
2 foo two 2.0 NaN
3 bar one 3.0 6.0
4 bar two NaN 7.0

To determine which key combinations will appear in the result depending on the choice of merge method, think of the multiple keys as forming an array fo tuples to be used as a single join key.

When you are joining columns-on-columns, the indexes on the passed DataFrame objects are discarded.

pd.merge(left, right, on='key1')

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key1 key2_x lval key2_y rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo two 2 one 4
3 foo two 2 one 5
4 bar one 3 one 6
5 bar one 3 two 7
pd.merge(left, right, on='key1', suffixes=('_left', '_right'))

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key1 key2_left lval key2_right rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo two 2 one 4
3 foo two 2 one 5
4 bar one 3 one 6
5 bar one 3 two 7

See Table 8-2 for an argument reference on merge. Joining using the DataFrame's row index is the subject of the next section.

  • left
  • right
  • how
  • on
  • left_on
  • right_on
  • left_index
  • right_index
  • sort
  • suffixes 添加后缀
  • copy
  • indecator

按Index合并

In some cases, the merge key(s) in a DataFrame will be found on its index, In this case, you can pass left_index=True or right_index=True to indicate that the index should be used as the merge key:

left1 = pd.DataFrame({
'key': ['a', 'b', 'a', 'a', 'b', 'c'],
'value': range(6)
}) right1 = pd.DataFrame({'group_val':[3.5, 7]}, index=['a', 'b']) left1
right1

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key value
0 a 0
1 b 1
2 a 2
3 a 3
4 b 4
5 c 5

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
group_val
a 3.5
b 7.0
pd.merge(left1, right1, left_on='key', right_index=True)

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
key value group_val
0 a 0 3.5
2 a 2 3.5
3 a 3 3.5
1 b 1 7.0
4 b 4 7.0

按轴水平/垂直合并

Another kind of data combination operation is referred to interchangeably as concat-enation, binding, or stacking, NumPy's concatenate function can do this with NumPy arrays:

arr = np.arange(12).reshape((3,4))

arr
array([[ 0,  1,  2,  3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
"直接水平拼接"

np.concatenate([arr, arr], axis=1)
'直接水平拼接'

array([[ 0,  1,  2,  3,  0,  1,  2,  3],
[ 4, 5, 6, 7, 4, 5, 6, 7],
[ 8, 9, 10, 11, 8, 9, 10, 11]])

不再继续往下扩展了, 就目前我工作中用得最多的还是Merge, Join,在处理表vlookup的场景下.还有就是涉及垂直/水平拼接的 pd.concat(), np.vstack() 和 np.hstack(), 结合SQL来配合使用,就非常灵活和高效了.

pandas 之 数据合并的更多相关文章

  1. 利用Python进行数据分析(12) pandas基础: 数据合并

    pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...

  2. 数据分析入门——pandas之数据合并

    主要分为:级联:pd.concat.pd.append 合并:pd.merge 一.numpy级联的回顾 详细参考numpy章节 https://www.cnblogs.com/jiangbei/p/ ...

  3. python 数据合并

    1. 数据合并 前言 一.横向合并 1. 基本合并语句 2. 键值名不一样的合并 3. “两个数据列名字重复了”的合并 二.纵向堆叠 统计师的Python日记[第6天:数据合并] 前言 根据我的Pyt ...

  4. pandas学习(数据分组与分组运算、离散化处理、数据合并)

    pandas学习(数据分组与分组运算.离散化处理.数据合并) 目录 数据分组与分组运算 离散化处理 数据合并 数据分组与分组运算 GroupBy技术:实现数据的分组,和分组运算,作用类似于数据透视表 ...

  5. PANDAS 数据合并与重塑(join/merge篇)

    pandas中也常常用到的join 和merge方法 merge pandas的merge方法提供了一种类似于SQL的内存链接操作,官网文档提到它的性能会比其他开源语言的数据操作(例如R)要高效. 和 ...

  6. pandas:根据行间差值进行数据合并

    1. 问题描述 在处理用户上网数据时,用户的上网行为数据之间存在时间间隔,按照实际情况,若时间间隔小于阈值(next_access_time_app),则可把这几条上网行为合并为一条行为数据:若时间间 ...

  7. python 数据清洗之数据合并、转换、过滤、排序

    前面我们用pandas做了一些基本的操作,接下来进一步了解数据的操作, 数据清洗一直是数据分析中极为重要的一个环节. 数据合并 在pandas中可以通过merge对数据进行合并操作. import n ...

  8. R︱高效数据操作——data.table包(实战心得、dplyr对比、key灵活用法、数据合并)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 由于业务中接触的数据量很大,于是不得不转战开始 ...

  9. 使用pandas进行数据预处理01

    数据预处理有四种技术:数据合并,数据清洗,数据标准化,以及数据转换. 数据合并技术:(1)横向或纵向堆叠合数据 (2)主键合并数据 (3)重叠合并数据 1.堆叠合并数据: 堆叠就是简单的把两个表拼接在 ...

随机推荐

  1. es6 Class类的使用

    es6新增了一种定义对象实例的方法,使用class关键字定义类,与class相关的知识点也逐步火热起来,但是部分理解起来相对抽象,简单对class相关的知识点进行总结,更好的使用class. 关于类有 ...

  2. 将HashMap转换为List

    背景 ​ SpringBoot中,使用@RquestBody注解 hashMap 接收多个参数的json字符串数据,包括一个数组和一个int值.数组中为一个个的对象组成. 问题 ​ 使用 map.ge ...

  3. set(集合)的使用方法

    1.普通集合set 直接定义一个set具有动态有序和去重的功效,不再赘述. 如果要实现set时从大到小排序(desc)的,只需要在定义的时候指定“大于符号”,即greater<class> ...

  4. 获取当前页面url指定参数值

    function getParam(paramName) { paramValue = "", isFound = !1; if (this.location.search.ind ...

  5. 【操作系统之七】Linux常用命令之tail

    一.概念linux tail命令用途是按照要求将指定的文件的最后部分输出到标准设备,一般是终端,就是把某个档案文件的最后几行显示到终端上,如果该档案有更新,tail会自动刷新,确保你看到最新的档案内容 ...

  6. Python【每日一问】32

    问: [基础题]:手机品牌存放在一个列表中 brandlist = ['华为','苹果','一加','OPPO','小米'],请实现以下功能:随机选择一个手机品牌屏幕输出 [提高题]:编写一个函数,输 ...

  7. LongAdder源码分析

    AtomicLong是作用是对长整形进行原子操作,显而易见,在java1.8中新加入了一个新的原子类LongAdder,该类也可以保证Long类型操作的原子性,相对于AtomicLong,LongAd ...

  8. Linux内核文档翻译——kobject.txt

    ==================================================================== Everything you never wanted to ...

  9. Apache Kafka使用默认配置执行一些负载测试来完成性能测试和基准测试

    Kafka是一种分布式,分区,复制的提交日志服务.它提供了消息传递系统的功能.   我们先来看看它的消息传递术语: Kafka在称为主题的类别中维护消息的提要. 我们将调用向Kafka主题生成器发布消 ...

  10. Django阅读目录

    (一)Django框架简介 (二)Django框架之第二篇--app注册.静态文件配置.form表单提交.pycharm连接数据库.django使用mysql数据库.表字段的增删改查.表数据的增删改查 ...