import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.axisartist as axisartist
from mpl_toolkits.mplot3d import Axes3D #画三维图不可少
from matplotlib import cm #cm 是colormap的简写 #定义坐标轴函数
def setup_axes(fig, rect):
ax = axisartist.Subplot(fig, rect)
fig.add_axes(ax) ax.set_ylim(-4, 4)
#自定义刻度
# ax.set_yticks([-10, 0,9])
ax.set_xlim(-4,4)
ax.axis[:].set_visible(False) #第2条线,即y轴,经过x=0的点
ax.axis["y"] = ax.new_floating_axis(1, 0)
ax.axis["y"].set_axisline_style("-|>", size=1.5)
# 第一条线,x轴,经过y=0的点
ax.axis["x"] = ax.new_floating_axis(0, 0)
ax.axis["x"].set_axisline_style("-|>", size=1.5) return(ax)
# 1_dimension gaussian function
def gaussian(x,mu,sigma):
f_x = 1/(sigma*np.sqrt(2*np.pi))*np.exp(-np.power(x-mu, 2.)/(2*np.power(sigma,2.)))
return(f_x) # 2_dimension gaussian function
def gaussian_2(x,y,mu_x,mu_y,sigma_x,sigma_y):
f_x_y = 1/(sigma_x*sigma_y*(np.sqrt(2*np.pi))**2)*np.exp(-np.power\
(x-mu_x, 2.)/(2*np.power(sigma_x,2.))-np.power(y-mu_y, 2.)/\
(2*np.power(sigma_y,2.)))
return(f_x_y) #设置画布
# fig = plt.figure(figsize=(8, 8)) #建议可以直接plt.figure()不定义大小
# ax1 = setup_axes(fig, 111)
# ax1.axis["x"].set_axis_direction("bottom")
# ax1.axis['y'].set_axis_direction('right')
# #在已经定义好的画布上加入高斯函数
x_values = np.linspace(-5,5,2000)
y_values = np.linspace(-5,5,2000)
X,Y = np.meshgrid(x_values,y_values)
mu_x,mu_y,sigma_x,sigma_y = 0,0,0.8,0.8
#F_x_y = gaussian_2(X,Y,mu_x,mu_y,sigma_x,sigma_y)
F_x_y = gaussian(X,mu_x,sigma_x)
#显示2d等高线图,画100条线
# plt.contour(X,Y,F_x_y,100)
# fig.show()
#显示三维图
fig = plt.figure()
ax = plt.gca(projection='3d')
ax.plot_surface(X,Y,F_x_y,cmap='jet')
#显示3d等高线图
ax.contour3D(X,Y,F_x_y,50,cmap='jet')
fig.show()

=======================二维========================

import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.axisartist as axisartist
from mpl_toolkits.mplot3d import Axes3D #画三维图不可少
from matplotlib import cm #cm 是colormap的简写 #定义坐标轴函数
def setup_axes(fig, rect):
ax = axisartist.Subplot(fig, rect)
fig.add_axes(ax) ax.set_ylim(-4, 4)
#自定义刻度
# ax.set_yticks([-10, 0,9])
ax.set_xlim(-4,4)
ax.axis[:].set_visible(False) #第2条线,即y轴,经过x=0的点
ax.axis["y"] = ax.new_floating_axis(1, 0)
ax.axis["y"].set_axisline_style("-|>", size=1.5)
# 第一条线,x轴,经过y=0的点
ax.axis["x"] = ax.new_floating_axis(0, 0)
ax.axis["x"].set_axisline_style("-|>", size=1.5) return(ax)
# 1_dimension gaussian function
def gaussian(x,mu,sigma):
f_x = 1/(sigma*np.sqrt(2*np.pi))*np.exp(-np.power(x-mu, 2.)/(2*np.power(sigma,2.)))
return(f_x) # 2_dimension gaussian function
def gaussian_2(x,y,mu_x,mu_y,sigma_x,sigma_y):
f_x_y = 1/(sigma_x*sigma_y*(np.sqrt(2*np.pi))**2)*np.exp(-np.power\
(x-mu_x, 2.)/(2*np.power(sigma_x,2.))-np.power(y-mu_y, 2.)/\
(2*np.power(sigma_y,2.)))
return(f_x_y) #设置画布
fig = plt.figure(figsize=(8, 8)) #建议可以直接plt.figure()不定义大小
ax1 = setup_axes(fig, 111)
ax1.axis["x"].set_axis_direction("bottom")
ax1.axis['y'].set_axis_direction('right')
# #在已经定义好的画布上加入高斯函数
x_values = np.linspace(-5,5,2000)
y_values = np.linspace(-5,5,2000)
X,Y = np.meshgrid(x_values,y_values)
mu_x,mu_y,sigma_x,sigma_y = 0,0,0.8,0.8
F_x_y = gaussian_2(X,Y,mu_x,mu_y,sigma_x,sigma_y)
#F_x_y = gaussian(X,mu_x,sigma_x)
#显示2d等高线图,画100条线
plt.contour(X,Y,F_x_y,100)
fig.show()

圆形

矩形:

import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.axisartist as axisartist
from mpl_toolkits.mplot3d import Axes3D #画三维图不可少
from matplotlib import cm #cm 是colormap的简写 #定义坐标轴函数
def setup_axes(fig, rect):
ax = axisartist.Subplot(fig, rect)
fig.add_axes(ax) ax.set_ylim(-4, 4)
#自定义刻度
# ax.set_yticks([-10, 0,9])
ax.set_xlim(-4,4)
ax.axis[:].set_visible(False) #第2条线,即y轴,经过x=0的点
ax.axis["y"] = ax.new_floating_axis(1, 0)
ax.axis["y"].set_axisline_style("-|>", size=1.5)
# 第一条线,x轴,经过y=0的点
ax.axis["x"] = ax.new_floating_axis(0, 0)
ax.axis["x"].set_axisline_style("-|>", size=1.5) return(ax)
# 1_dimension gaussian function
def gaussian(x,mu,sigma):
f_x = 1/(sigma*np.sqrt(2*np.pi))*np.exp(-np.power(x-mu, 2.)/(2*np.power(sigma,2.)))
return(f_x) # 2_dimension gaussian function
def gaussian_2(x,y,mu_x,mu_y,sigma_x,sigma_y):
f_x_y = 1/(sigma_x*sigma_y*(np.sqrt(2*np.pi))**2)*np.exp(-np.power\
(x-mu_x, 2.)/(2*np.power(sigma_x,2.))-np.power(y-mu_y, 2.)/\
(2*np.power(sigma_y,2.)))
return(f_x_y) #设置画布
fig = plt.figure(figsize=(8, 8)) #建议可以直接plt.figure()不定义大小
ax1 = setup_axes(fig, 111)
ax1.axis["x"].set_axis_direction("bottom")
ax1.axis['y'].set_axis_direction('right')
# #在已经定义好的画布上加入高斯函数
x_values = np.linspace(-5,5,2000)
y_values = np.linspace(-5,5,2000)
X,Y = np.meshgrid(x_values,y_values)
mu_x,mu_y,sigma_x,sigma_y = 0,0,0.8,0.8
#F_x_y = gaussian_2(X,Y,mu_x,mu_y,sigma_x,sigma_y)
F_x_y = gaussian(X,mu_x,sigma_x)
#显示2d等高线图,画100条线
plt.contour(X,Y,F_x_y,100)
fig.show()

  

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, np.pi, 100)
x = 10 * np.outer(np.cos(u), np.sin(v))
y = 10 * np.outer(np.sin(u), np.sin(v))
z = 10 * np.outer(np.ones(np.size(u)), np.cos(v))
ax.plot_surface(x, y, z, rstride=4, cstride=4, color='b')
plt.show()

python gaussian,gaussian2的更多相关文章

  1. sublime text 3 + python配置,完整搭建及常用插件安装

    四年的时间,一直使用EmEditor编辑器进行Python开发,之前是做面向过程,只需要将一个单独的py文件维护好即可,用着也挺顺手,但是最近在做面向对象的开发,不同的py文件中相互关联较多,感觉单纯 ...

  2. [Python学习] Linux环境下的Python配置,必备库的安装配置

    1.默认Python安装情况 一般情况,Linux会预装Python的,版本较低,比如Ubuntu15的系统一般预装的是Python2.7.10. 使用命令:which python可以查看当前的py ...

  3. [记录][python]python爬虫,下载某图片网站的所有图集

    随笔仅用于学习交流,转载时请注明出处,http://www.cnblogs.com/CaDevil/p/5958770.html 该随笔是记录我的第一个python程序,一个爬去指定图片站点的所有图集 ...

  4. 【Python①】python简介,安装以及配置

    今天开始学习python,将一些心得和知识点记录下来,如有疏漏或表达问题,欢迎指正.后面所有代码均为Python 3.3.2版本(运行环境:Windows7)编写. 附:2014年8月TIOBE编程语 ...

  5. Python运算符,python入门到精通[五]

    运算符用于执行程序代码运算,会针对一个以上操作数项目来进行运算.例如:2+3,其操作数是2和3,而运算符则是“+”.在计算器语言中运算符大致可以分为5种类型:算术运算符.连接运算符.关系运算符.赋值运 ...

  6. 让计算机崩溃的python代码,求共同分析

    在现在的异常机制处理的比较完善的编码系统里面,让计算机完全崩溃无法操作的代码还是不多的.今天就无意运行到这段python代码,运行完,计算机直接崩溃,任务管理器都无法调用,任何键都用不了,只能强行电源 ...

  7. python中,ascii,unicode,utf8,gbk之间的关系梳理

    在计算机中,经常遇到编码问题,本节主要梳理下ascii,unicode,utf8,gbk 这几种编码之间的关系. ASCII 计算机中,所有数据都以0和1来表示.在一开始的时候,要表示的内容比较少,人 ...

  8. Python与Hack之window下运行带参数的Python脚本,实现一个简单的端口扫描器

    1.前提是:windows已经配置好Python的环境变量: 2.进入cmd命令行模式: **输入python命令,检测是否环境配置好:显示这样说明配置环境变量没问题 **用cd命令进入Python脚 ...

  9. 完成一段简单的Python程序,使用函数实现用来判断输入数是偶数还是奇数

    #!/bin/usr/env python#coding=utf-8'''完成一段简单的Python程序,使用函数实现用来判断偶数和奇数'''def number_deal(a): if a%2==0 ...

随机推荐

  1. Vue学习之vue-resource小结(五)

    一.Vue实现数据交互的方式: 1.Vue除了vue-resource之外,还可以使用‘axios’的第三方包实现数据的请求: 2.常见的数据请求类型有: get.post.jsonp 3.JSONP ...

  2. Spring中基于注解的IOC(二):案例与总结

    2.Spring的IOC案例 创建maven项目 导入依赖 pom.xml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ...

  3. python可视化_matplotlib

    对于Python数据可视化库,matplotlib 已经成为事实上的数据可视化方面最主要的库,此外还有很多其他库,例如vispy,bokeh, seaborn,pyga,folium 和 networ ...

  4. 多态典型用例之virtual

    多态典型用例之virtual 参考:https://www.cnblogs.com/dormant/p/5223215.html 1.虚函数(virtual) (1)在某基类中声明为 virtual ...

  5. C语言结构体变量字节对齐问题总结

    结构体字节对齐 在用sizeof运算符求算某结构体所占空间时,并不是简单地将结构体中所有元素各自占的空间相加,这里涉及到内存字节对齐的问题.从理论上讲,对于任何 变量的访问都可以从任何地址开始访问,但 ...

  6. Apache JMeter系列.1

    最爱看统计 --01-- 简介 Apache JMeter Apache JMeter可用于测试静态和动态资源(文件,Servlet,Perl脚本,Java对象,数据库和查询,FTP服务器等)的性能. ...

  7. docker端口映射或启动容器时报错Error

    现象: [root@localhost ~]# docker run -d -p 9000:80 centos:httpd /bin/sh -c /usr/local/bin/start.shd5b2 ...

  8. 洛谷P2495 [SDOI2011]消耗战(虚树dp)

    P2495 [SDOI2011]消耗战 题目链接 题解: 虚树\(dp\)入门题吧.虚树的核心思想其实就是每次只保留关键点,因为关键点的dfs序的相对大小顺序和原来的树中结点dfs序的相对大小顺序都是 ...

  9. httprunner学习13-环境变量.env

    前言 一般来说,在进行实际应用的开发过程中,应用会拥有不同的运行环境,通常会有以下环境: 本地开发环境 测试环境 生产环境 在不同环境中,我们可能会使用不同的数据库或邮件发送驱动等配置,这时候则需要通 ...

  10. yum下载Zabbix4.0失败的解决方法

    根据官网说明配置的yum源,今天用yum下载Zabbix时莫名的报错,经过几番折腾,找到了解决方法. 一.报错如下: 二. 解决方法: [root@VM_0_6_centos ~]# cat /etc ...