将网络模型,图加权值,保存为.pb文件  write.py

# -*- coding: utf-8 -*-

from __future__ import absolute_import, unicode_literals
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import shutil
import os.path export_dir = '../model/'
if os.path.exists(export_dir):
shutil.rmtree(export_dir) def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME') mnist = input_data.read_data_sets("../MNIST_data/", one_hot=True) with tf.Graph().as_default(): ## 变量占位符定义
x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10]) ## 定义网络结构
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1, 28, 28, 1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
#
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
#
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
#
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
#
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
#
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) ## 定义损失及优化器
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) with tf.Session() as sess:
## 初始化变量
sess.run(tf.global_variables_initializer())
for i in range(201):
batch = mnist.train.next_batch(50)
if i % 100 == 0:
## 验证阶段dropout比率为1
train_accuracy = sess.run(accuracy, feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
print "step %d, training accuracy %g" % (i, train_accuracy)
sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print('test accuracy %g' % sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) ## 将网络中的权值变量取出来
_W_conv1 = sess.run(W_conv1)
_b_conv1 = sess.run(b_conv1)
_W_conv2 = sess.run(W_conv2)
_b_conv2 = sess.run(b_conv2)
_W_fc1 = sess.run(W_fc1)
_b_fc1 = sess.run(b_fc1)
_W_fc2 = sess.run(W_fc2)
_b_fc2 = sess.run(b_fc2) ## 创建另外一个图,验证权值的正确性并save model
with tf.Graph().as_default():
## 定义变量占位符
x_2 = tf.placeholder("float", shape=[None, 784], name="input")
y_2 = tf.placeholder("float", [None, 10]) ## 网络的权重用上一个图中已经学习好的对应值
W_conv1_2 = tf.constant(_W_conv1, name="constant_W_conv1")
b_conv1_2 = tf.constant(_b_conv1, name="constant_b_conv1")
x_image_2 = tf.reshape(x_2, [-1, 28, 28, 1])
h_conv1_2 = tf.nn.relu(conv2d(x_image_2, W_conv1_2) + b_conv1_2)
h_pool1_2 = max_pool_2x2(h_conv1_2)
#
W_conv2_2 = tf.constant(_W_conv2, name="constant_W_conv2")
b_conv2_2 = tf.constant(_b_conv2, name="constant_b_conv2")
h_conv2_2 = tf.nn.relu(conv2d(h_pool1_2, W_conv2_2) + b_conv2_2)
h_pool2_2 = max_pool_2x2(h_conv2_2)
#
W_fc1_2 = tf.constant(_W_fc1, name="constant_W_fc1")
b_fc1_2 = tf.constant(_b_fc1, name="constant_b_fc1")
h_pool2_flat_2 = tf.reshape(h_pool2_2, [-1, 7 * 7 * 64])
h_fc1_2 = tf.nn.relu(tf.matmul(h_pool2_flat_2, W_fc1_2) + b_fc1_2)
#
# DropOut is skipped for exported graph.
## 由于是验证过程,所以dropout层去掉,也相当于keep_prob为1
#
W_fc2_2 = tf.constant(_W_fc2, name="constant_W_fc2")
b_fc2_2 = tf.constant(_b_fc2, name="constant_b_fc2")
#
y_conv_2 = tf.nn.softmax(tf.matmul(h_fc1_2, W_fc2_2) + b_fc2_2, name="output") with tf.Session() as sess_2:
sess_2.run(tf.global_variables_initializer())
tf.train.write_graph(sess_2.graph_def, export_dir, 'expert-graph.pb', as_text=False)
correct_prediction_2 = tf.equal(tf.argmax(y_conv_2, 1), tf.argmax(y_2, 1))
accuracy_2 = tf.reduce_mean(tf.cast(correct_prediction_2, "float"))
print('check accuracy %g' % sess_2.run(accuracy_2, feed_dict={x_2: mnist.test.images, y_2: mnist.test.labels}))

  

从.pb文件中还原网络模型 load.py

#! -*- coding: utf-8 -*-
from __future__ import absolute_import, unicode_literals
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf mnist = input_data.read_data_sets("../MNIST_data/", one_hot=True) with tf.Graph().as_default():
output_graph_def = tf.GraphDef()
output_graph_path = '../model/expert-graph.pb' with open(output_graph_path, 'rb') as f:
output_graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(output_graph_def, name="") with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
input = sess.graph.get_tensor_by_name("input:0")
output = sess.graph.get_tensor_by_name("output:0")
y_conv_2 = sess.run(output, feed_dict={input:mnist.test.images})
y_2 = mnist.test.labels
correct_prediction_2 = tf.equal(tf.argmax(y_conv_2, 1), tf.argmax(y_2, 1))
accuracy_2 = tf.reduce_mean(tf.cast(correct_prediction_2, "float"))
print "check accuracy %g" % sess.run(accuracy_2)

  

参考:

https://blog.csdn.net/guvcolie/article/details/77478973

TensorFlow 保存模型为 PB 文件:https://zhuanlan.zhihu.com/p/32887066

TF 保存模型为 .pb格式的更多相关文章

  1. TensorFlow 自定义模型导出:将 .ckpt 格式转化为 .pb 格式

    本文承接上文 TensorFlow-slim 训练 CNN 分类模型(续),阐述通过 tf.contrib.slim 的函数 slim.learning.train 训练的模型,怎么通过人为的加入数据 ...

  2. 将TensorFlow模型变为pb——官方本身提供API,直接调用即可

    TensorFlow: How to freeze a model and serve it with a python API 参考:https://blog.metaflow.fr/tensorf ...

  3. Tensorflow加载预训练模型和保存模型(ckpt文件)以及迁移学习finetuning

    转载自:https://blog.csdn.net/huachao1001/article/details/78501928 使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我 ...

  4. Tensorflow加载预训练模型和保存模型

    转载自:https://blog.csdn.net/huachao1001/article/details/78501928 使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我 ...

  5. 【4】TensorFlow光速入门-保存模型及加载模型并使用

    本文地址:https://www.cnblogs.com/tujia/p/13862360.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tenso ...

  6. TF的模型文件

    TF的模型文件 标签(空格分隔): TensorFlow Saver tensorflow模型保存函数为: tf.train.Saver() 当然,除了上面最简单的保存方式,也可以指定保存的步数,多长 ...

  7. (原)tensorflow保存模型及载入保存的模型

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/7198773.html 参考网址: http://stackoverflow.com/questions ...

  8. tensorflow训练自己的数据集实现CNN图像分类2(保存模型&测试单张图片)

    神经网络训练的时候,我们需要将模型保存下来,方便后面继续训练或者用训练好的模型进行测试.因此,我们需要创建一个saver保存模型. def run_training(): data_dir = 'C: ...

  9. [Pytorch]Pytorch 保存模型与加载模型(转)

    转自:知乎 目录: 保存模型与加载模型 冻结一部分参数,训练另一部分参数 采用不同的学习率进行训练 1.保存模型与加载 简单的保存与加载方法: # 保存整个网络 torch.save(net, PAT ...

随机推荐

  1. linux-Windows文件上传Linux

    使用Xshell5工具: 1.使用cmd在Windows上压缩文件 2.在Xshell5上使用SSH协议与Linux服务器建立连接 3.新建文件传输 4.切换到Linux文件目录 5.使用put命令进 ...

  2. PHP应用如何对接微信公众号JSAPI支付

    微信支付的产品有很多,1. JSAPI支付  2. APP支付  3. Native支付  4.付款码支付  5. H5支付. 其中基于微信公众号开发的应用选择“JSAPI支付“产品,其他APP支付需 ...

  3. vue响应式原理,去掉优化,只看核心

    Vue响应式原理 作为写业务的码农,几乎不必知道原理.但是当你去找工作的时候,可是需要造原子弹的,什么都得知道一些才行.所以找工作之前可以先复习下,只要是关于vue的,必定会问响应式原理. 核心: / ...

  4. fastjson 将json字符串转化成List<Map<String, Object>>

    亲测可行,如下: JSON.parseObject(jsonstr, new TypeReference<List<Map<String, Object>>>() ...

  5. h5 js复制 功能

    感谢 http://www.jq22.com/webqd6003 var copy1 = document.getElementById('copy1'); var copy2 = document. ...

  6. Python paramiko安装报错

    报错:CryptographyDeprecationWarning 代码引用: import paramiko client = paramiko.SSHClient() client.connect ...

  7. .NET CORE 升级3.0遇到的问题the project must provide a value for configuration

    将.NET Core 2.2应用程序迁移到Core 3.0时遇到了the project must provide a value for configuration的问题.原来在.proj项目文件文 ...

  8. Codeforces A. Kyoya and Colored Balls(分步组合)

    题目描述: Kyoya and Colored Balls time limit per test 2 seconds memory limit per test 256 megabytes inpu ...

  9. MySQL利用IF查询不同条件并分别统计记录数

    数据库记录如下: 现在要查询统计出每个'name'的'result'分别为'success'和'fail'的次数: 利用IF条件判断满足条件为1,不满足为0,再用SUM函数求和,最后通过'name'分 ...

  10. 项目Beta冲刺(团队)——05.25(3/7)

    项目Beta冲刺(团队)--05.25(3/7) 格式描述 课程名称:软件工程1916|W(福州大学) 作业要求:项目Beta冲刺(团队) 团队名称:为了交项目干杯 作业目标:记录Beta敏捷冲刺第3 ...