将网络模型,图加权值,保存为.pb文件  write.py

# -*- coding: utf-8 -*-

from __future__ import absolute_import, unicode_literals
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import shutil
import os.path export_dir = '../model/'
if os.path.exists(export_dir):
shutil.rmtree(export_dir) def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME') mnist = input_data.read_data_sets("../MNIST_data/", one_hot=True) with tf.Graph().as_default(): ## 变量占位符定义
x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10]) ## 定义网络结构
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1, 28, 28, 1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
#
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
#
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
#
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
#
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
#
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) ## 定义损失及优化器
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) with tf.Session() as sess:
## 初始化变量
sess.run(tf.global_variables_initializer())
for i in range(201):
batch = mnist.train.next_batch(50)
if i % 100 == 0:
## 验证阶段dropout比率为1
train_accuracy = sess.run(accuracy, feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
print "step %d, training accuracy %g" % (i, train_accuracy)
sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print('test accuracy %g' % sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) ## 将网络中的权值变量取出来
_W_conv1 = sess.run(W_conv1)
_b_conv1 = sess.run(b_conv1)
_W_conv2 = sess.run(W_conv2)
_b_conv2 = sess.run(b_conv2)
_W_fc1 = sess.run(W_fc1)
_b_fc1 = sess.run(b_fc1)
_W_fc2 = sess.run(W_fc2)
_b_fc2 = sess.run(b_fc2) ## 创建另外一个图,验证权值的正确性并save model
with tf.Graph().as_default():
## 定义变量占位符
x_2 = tf.placeholder("float", shape=[None, 784], name="input")
y_2 = tf.placeholder("float", [None, 10]) ## 网络的权重用上一个图中已经学习好的对应值
W_conv1_2 = tf.constant(_W_conv1, name="constant_W_conv1")
b_conv1_2 = tf.constant(_b_conv1, name="constant_b_conv1")
x_image_2 = tf.reshape(x_2, [-1, 28, 28, 1])
h_conv1_2 = tf.nn.relu(conv2d(x_image_2, W_conv1_2) + b_conv1_2)
h_pool1_2 = max_pool_2x2(h_conv1_2)
#
W_conv2_2 = tf.constant(_W_conv2, name="constant_W_conv2")
b_conv2_2 = tf.constant(_b_conv2, name="constant_b_conv2")
h_conv2_2 = tf.nn.relu(conv2d(h_pool1_2, W_conv2_2) + b_conv2_2)
h_pool2_2 = max_pool_2x2(h_conv2_2)
#
W_fc1_2 = tf.constant(_W_fc1, name="constant_W_fc1")
b_fc1_2 = tf.constant(_b_fc1, name="constant_b_fc1")
h_pool2_flat_2 = tf.reshape(h_pool2_2, [-1, 7 * 7 * 64])
h_fc1_2 = tf.nn.relu(tf.matmul(h_pool2_flat_2, W_fc1_2) + b_fc1_2)
#
# DropOut is skipped for exported graph.
## 由于是验证过程,所以dropout层去掉,也相当于keep_prob为1
#
W_fc2_2 = tf.constant(_W_fc2, name="constant_W_fc2")
b_fc2_2 = tf.constant(_b_fc2, name="constant_b_fc2")
#
y_conv_2 = tf.nn.softmax(tf.matmul(h_fc1_2, W_fc2_2) + b_fc2_2, name="output") with tf.Session() as sess_2:
sess_2.run(tf.global_variables_initializer())
tf.train.write_graph(sess_2.graph_def, export_dir, 'expert-graph.pb', as_text=False)
correct_prediction_2 = tf.equal(tf.argmax(y_conv_2, 1), tf.argmax(y_2, 1))
accuracy_2 = tf.reduce_mean(tf.cast(correct_prediction_2, "float"))
print('check accuracy %g' % sess_2.run(accuracy_2, feed_dict={x_2: mnist.test.images, y_2: mnist.test.labels}))

  

从.pb文件中还原网络模型 load.py

#! -*- coding: utf-8 -*-
from __future__ import absolute_import, unicode_literals
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf mnist = input_data.read_data_sets("../MNIST_data/", one_hot=True) with tf.Graph().as_default():
output_graph_def = tf.GraphDef()
output_graph_path = '../model/expert-graph.pb' with open(output_graph_path, 'rb') as f:
output_graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(output_graph_def, name="") with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
input = sess.graph.get_tensor_by_name("input:0")
output = sess.graph.get_tensor_by_name("output:0")
y_conv_2 = sess.run(output, feed_dict={input:mnist.test.images})
y_2 = mnist.test.labels
correct_prediction_2 = tf.equal(tf.argmax(y_conv_2, 1), tf.argmax(y_2, 1))
accuracy_2 = tf.reduce_mean(tf.cast(correct_prediction_2, "float"))
print "check accuracy %g" % sess.run(accuracy_2)

  

参考:

https://blog.csdn.net/guvcolie/article/details/77478973

TensorFlow 保存模型为 PB 文件:https://zhuanlan.zhihu.com/p/32887066

TF 保存模型为 .pb格式的更多相关文章

  1. TensorFlow 自定义模型导出:将 .ckpt 格式转化为 .pb 格式

    本文承接上文 TensorFlow-slim 训练 CNN 分类模型(续),阐述通过 tf.contrib.slim 的函数 slim.learning.train 训练的模型,怎么通过人为的加入数据 ...

  2. 将TensorFlow模型变为pb——官方本身提供API,直接调用即可

    TensorFlow: How to freeze a model and serve it with a python API 参考:https://blog.metaflow.fr/tensorf ...

  3. Tensorflow加载预训练模型和保存模型(ckpt文件)以及迁移学习finetuning

    转载自:https://blog.csdn.net/huachao1001/article/details/78501928 使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我 ...

  4. Tensorflow加载预训练模型和保存模型

    转载自:https://blog.csdn.net/huachao1001/article/details/78501928 使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我 ...

  5. 【4】TensorFlow光速入门-保存模型及加载模型并使用

    本文地址:https://www.cnblogs.com/tujia/p/13862360.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tenso ...

  6. TF的模型文件

    TF的模型文件 标签(空格分隔): TensorFlow Saver tensorflow模型保存函数为: tf.train.Saver() 当然,除了上面最简单的保存方式,也可以指定保存的步数,多长 ...

  7. (原)tensorflow保存模型及载入保存的模型

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/7198773.html 参考网址: http://stackoverflow.com/questions ...

  8. tensorflow训练自己的数据集实现CNN图像分类2(保存模型&测试单张图片)

    神经网络训练的时候,我们需要将模型保存下来,方便后面继续训练或者用训练好的模型进行测试.因此,我们需要创建一个saver保存模型. def run_training(): data_dir = 'C: ...

  9. [Pytorch]Pytorch 保存模型与加载模型(转)

    转自:知乎 目录: 保存模型与加载模型 冻结一部分参数,训练另一部分参数 采用不同的学习率进行训练 1.保存模型与加载 简单的保存与加载方法: # 保存整个网络 torch.save(net, PAT ...

随机推荐

  1. android Camera 之 ZSL

    ZSL的概念 ZSL (zero shutter lag) 中文名称为零延时拍照,是为了减少拍照延时,让拍照&回显瞬间完成的一种技术. Single Shot 当开始预览后,sensor 和  ...

  2. springboot使用Fiber纤程踩过的坑

    @RequestAttribute为null 在springboot中使用@FiberSpringBootApplication注解标注在SpringBootApplication上时,发现在拦截器( ...

  3. flask建表遇到的错误: flask,sqlalchemy.exc.OperationalError: (MySQLdb._exceptions.OperationalError) (1071, 'Specified key was too long; max key length is 767 bytes')

    error:flask,sqlalchemy.exc.OperationalError: (MySQLdb._exceptions.OperationalError) (1071, 'Specifie ...

  4. css实现弹框垂直居中

    原文链接:https://blog.csdn.net/sunny327/article/details/47419949/ <!DOCTYPE html><html> < ...

  5. zabbix--远程执行命令

    zabbix 远程执行命令 重启应用 服务器 使用远程执行命令可以在某些时候帮我做一些事情,达到轻量级的自动化,比如当 nginx.mysql.php.redis.tomcat.等等应用挂掉时帮我们自 ...

  6. Ueditor 自动设置上传图片的宽度或高度

    Uedior在上传图片的生活,需要自动设置上传图片的宽度或高度属性.该方法只能用于多图上传组件,单图上传无法使用. 该方法基于 ueditor 1.4.3 版本制作: 1.添加属性字段,在config ...

  7. iView学习笔记(三):表格搜索,过滤及隐藏列操作

    iView学习笔记(三):表格搜索,过滤及隐藏某列操作 1.后端准备工作 环境说明 python版本:3.6.6 Django版本:1.11.8 数据库:MariaDB 5.5.60 新建Django ...

  8. python 获取当前,上级,上上级路径

    import os print '***获取当前目录***' print os.getcwd() print os.path.abspath(os.path.dirname(__file__)) pr ...

  9. NameValueCollectionValueProvider

    NameValueCollectionValueProvider provider = new NameValueCollectionValueProvider(nameValueCollection ...

  10. 2019牛客暑期多校训练营(第六场)C:Palindrome Mouse(回文树+树剖)

    题意:给定字符串Str,求出回文串集合为S,问S中的(a,b)满足a是b的子串的对数. 思路:开始和题解的思路差不多,维护当前后缀的每个串的最后出现位置,但是不知道怎么套“最小回文分割”,所以想到了树 ...