P2212 [USACO14MAR]浇地Watering the Fields

题目描述

Due to a lack of rain, Farmer John wants to build an irrigation system to

send water between his N fields (1 <= N <= 2000).

Each field i is described by a distinct point (xi, yi) in the 2D plane,

with 0 <= xi, yi <= 1000. The cost of building a water pipe between two

fields i and j is equal to the squared Euclidean distance between them:

(xi - xj)^2 + (yi - yj)^2

FJ would like to build a minimum-cost system of pipes so that all of his

fields are linked together -- so that water in any field can follow a

sequence of pipes to reach any other field.

Unfortunately, the contractor who is helping FJ install his irrigation

system refuses to install any pipe unless its cost (squared Euclidean

length) is at least C (1 <= C <= 1,000,000).

Please help FJ compute the minimum amount he will need pay to connect all

his fields with a network of pipes.

农民约翰想建立一个灌溉系统,给他的NN (1 <= NN <= 2000)块田送水。农田在一个二维平面上,第i块农田坐标为(x_ixi​ , y_iyi​ )(0 <= x_ixi​ , y_iyi​ <= 1000),在农田ii 和农田jj 自己铺设水管的费用是这两块农田的欧几里得距离的平方(x_i - x_j)^2 + (y_i - y_j)^2(xi​−xj​)2+(yi​−yj​)2 。

农民约翰希望所有的农田之间都能通水,而且希望花费最少的钱。但是安装工人拒绝安装费用小于C的水管(1 <= CC <= 1,000,000)。

请帮助农民约翰建立一个花费最小的灌溉网络,如果无法建立请输出-1。

输入格式

  • Line 1: The integers N and C.

  • Lines 2..1+N: Line i+1 contains the integers xi and yi.

输出格式

  • Line 1: The minimum cost of a network of pipes connecting the

fields, or -1 if no such network can be built.

输入输出样例

输入 #1复制

3 11

0 2

5 0

4 3

输出 #1复制

46

说明/提示

INPUT DETAILS:

There are 3 fields, at locations (0,2), (5,0), and (4,3). The contractor

will only install pipes of cost at least 11.

OUTPUT DETAILS:

FJ cannot build a pipe between the fields at (4,3) and (5,0), since its

cost would be only 10. He therefore builds a pipe between (0,2) and (5,0)

at cost 29, and a pipe between (0,2) and (4,3) at cost 17.

Source: USACO 2014 March Contest, Silver

【思路】

生成树 + 克鲁斯卡尔 + 并查集

不得不吐槽一下

这道题作为绿题是真的有点水

先预处理出任意两个不相同的点之间的距离

用一个结构体储存起来

然后轻轻松松结构体排序一下

从第一个开始枚举

要满足先花费大于等于c

然后开始构建最小生成树

如果构建的出来

输出总花费

如果构建不出来

那就输出-1

何为构建不出来

用一个计数器计数已经使用了的边的个数

如果变数达到n-1条

也就是满足了让n个点连接的最少边数

那就可以结束了

如果枚举完全部的预处理出来的边之后

发现计数器计的数还不够n-1条边

那就是构建不出来咯

【完整代码】

#include<iostream>
#include<cstdio>
#include<algorithm> using namespace std;
const int Max = 2003;
struct node
{
int x,y;
int w;
}a[Max * Max];
int x[Max],y[Max];
int father[Max];
int n,c;
int sum = 0;
bool cmp(const node x,const node y)
{
return x.w < y.w;
}
int find(int x)
{
if(father[x] != x)father[x] = find(father[x]);
return father[x];
}
void hebing(int x,int y)
{
x = find(x);
y = find(y);
father[x] = y;
}
int main()
{
cin >> n >> c;
for(register int i = 1;i <= n;++ i)
father[i] = i;
for(register int i = 1;i <= n;++ i)
cin >> x[i] >> y[i];
for(register int i = 1;i <= n;++ i)
{
for(register int j = i + 1;j <= n;++ j)
{
if(i != j)
{
a[++ sum].x = i;
a[sum].y = j;
a[sum].w = (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]);
}
}
}
sort(a + 1,a + 1 + sum,cmp);
int ans = 0;
int js = 0;
for(register int i = 1;i <= sum;++ i)
{
if(a[i].w >= c)
{
if(find(a[i].x) != find(a[i].y))
{
hebing(a[i].x,a[i].y);
js ++;
ans += a[i].w;
}
if(js == n - 1)
break;
}
}
if(js != n - 1)
cout << -1 << endl;
else
cout << ans << endl;
return 0;
}

洛谷 P2212 [USACO14MAR]浇地Watering the Fields 题解的更多相关文章

  1. 洛谷——P2212 [USACO14MAR]浇地Watering the Fields

    P2212 [USACO14MAR]浇地Watering the Fields 题目描述 Due to a lack of rain, Farmer John wants to build an ir ...

  2. 洛谷 P2212 [USACO14MAR]浇地Watering the Fields

    传送门 题解:计算欧几里得距离,Krusal加入边权大于等于c的边,统计最后树的边权和. 代码: #include<iostream> #include<cstdio> #in ...

  3. P2212 [USACO14MAR]浇地Watering the Fields

    P2212 [USACO14MAR]浇地Watering the Fields 题目描述 Due to a lack of rain, Farmer John wants to build an ir ...

  4. P2212 [USACO14MAR]浇地Watering the Fields 洛谷

    https://www.luogu.org/problem/show?pid=2212 题目描述 Due to a lack of rain, Farmer John wants to build a ...

  5. luogu题解 P2212 【浇地Watering the Fields】

    题目链接: https://www.luogu.org/problemnew/show/P2212 思路: 一道最小生成树裸题(最近居然变得这么水了),但是因为我太蒻,搞了好久,不过借此加深了对最小生 ...

  6. [USACO14MAR]浇地Watering the Fields

    题目描述 Due to a lack of rain, Farmer John wants to build an irrigation system tosend water between his ...

  7. 洛谷 P1879 [USACO06NOV]玉米田Corn Fields 题解

    P1879 [USACO06NOV]玉米田Corn Fields 题目描述 Farmer John has purchased a lush new rectangular pasture compo ...

  8. 洛谷P1879 [USACO06NOV]玉米田Corn Fields(状压dp)

    洛谷P1879 [USACO06NOV]玉米田Corn Fields \(f[i][j]\) 表示前 \(i\) 行且第 \(i\) 行状态为 \(j\) 的方案总数.\(j\) 的大小为 \(0 \ ...

  9. 洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)

    洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/132 ...

随机推荐

  1. Idea中类实现Serializable接口 引入 serialVersionUID

    idea实现Serializable接口,然后打出serialVersionUID的办法 setting>editor>Inspection>Java>Serializatio ...

  2. 2019 唯品会java面试笔试题 (含面试题解析)

      本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.唯品会等公司offer,岗位是Java后端开发,因为发展原因最终选择去了唯品会,入职一年时间了,也成为了面试官 ...

  3. SpringDataRedis

    一.简介 1.SpringData和Redis Redis将数据存储到内存的,速度快.可以解决请求mysql数据库过多而导致mysql崩溃的问题. SpringData是专门用来控制Redis的工具, ...

  4. 要想获取select的值,使用ng-modle,否则无法获取select 的值

    ng-bind是从$scope -> view的单向绑定 ng-modle是$scope <-> view的双向绑定 <form role="form" c ...

  5. 非洲affrike单词

    affrike 英文单词,含义是非洲,非洲大陆. 中文名:非洲 外文名:affrike 目录 释义 affrike noun名词 非洲,也用做africa 1.Word Origin and Hist ...

  6. Linux内核同步机制之completion

    内核编程中常见的一种模式是,在当前线程之外初始化某个活动,然后等待该活动的结束.这个活动可能是,创建一个新的内核线程或者新的用户空间进程.对一个已有进程的某个请求,或者某种类型的硬件动作,等等.在这种 ...

  7. I2C总线

    PHILIPS公司开发的两线式串行总线 GPIO模拟i2c驱动中有自己的一套传输算法.GPIO模拟I2C是要占用CPU资源的,而用I2C芯片是不占CPU资源的 特点 接口线少,控制方式简单,器件封装形 ...

  8. gitlab中clone项目时,IP地址是一串数字

    问题:docker安装后,clone显示ip是一串地址 解决(如果是非docker启动的,自然就是进入gitlab下): 1.进入docker 后台: docker exec -it gitlab / ...

  9. js计算两个时间差 天 时 分 秒 毫秒

    // 计算两个时间差 dateBegin 开始时间 function timeFn(dateBegin) { //如果时间格式是正确的,那下面这一步转化时间格式就可以不用了 var dateEnd = ...

  10. MySQL DataType--定点数(Fixed-Point Types)学习

    DECIMAL和NUMERIC MySQL支持两种定点数类型:DECIMAL和NUMERIC,而NUMERIC实现为DECIMAL,因此MySQL中DECIMAL和NUMERIC等价相同. 如使用下面 ...