什么是SEH?

SEH( Structured Exception Handling , 结构化异常处理 )

结构化异常处理(SEH)是Windows操作系统提供的强大异常处理功能。而Visual C++中的__try{}/__finally{}和__try{}/__except{}结构本质上是对Windows提供的SEH的封装

我们知道SEH是基于线程的异常处理,我们利用 __try{}/__except{}来模拟一下SEH的异常处理:

在这里可以看到我们把EAX的值置为空指针,然后向空指针里写入值,引发 STATUS_ACCESS_VIOLATION(内存访问异常) ,然后在异常处理里面把
EAX的值设置为 变量dwTest的地址,然后返回 EXCEPTION_CONTINUE_EXECUTION 表示异常被处理,从异常处继续执行,这里是MSDN
对于异常处理( Exception Handling )返回值的定义:
1
2
3
#define EXCEPTION_EXECUTE_HANDLER       1        //表示异常被处理,从下一条指令开始执行
#define EXCEPTION_CONTINUE_SEARCH       0        //表示异常未被处理,交由下一个SEH
#define EXCEPTION_CONTINUE_EXECUTION    -1    //表示异常被处理,从异常处开始执行
对于上面这段定义,很多人给出的注释不同,以上注释是我对他们的实验结果和理解。
 

Windows下各种异常处理的优先级

平时我们听说过很多异常处理术语:VEH SEH VCH UEF等等,下面我们用实验整理它们先后的处理顺序;

  • VEH(向量化异常处理,最顶端的异常处理)
1
2
3
4
PVOID WINAPI AddVectoredExceptionHandler(
  _In_  ULONG FirstHandler,
  _In_  PVECTORED_EXCEPTION_HANDLER VectoredHandler
);

向进程里注册一个异常捕获函数,参数FirstHandler 决定插入到链表的位置(非0为头部,0为底部),异常处理中最先执行

  • VCH(同上,最低端 的异常处理 )
1
2
3
4
PVOID WINAPI AddVectoredContinueHandler(
  _In_  ULONG FirstHandler,
  _In_  PVECTORED_EXCEPTION_HANDLER VectoredHandler
);

向进程里注册一个异常捕获函数,参数FirstHandler 决定插入到链表的位置(非0为头部, 0为底部 ) ,异常处理中最后执行

  • SEH(结构化异常处理,基于线程栈的异常处理)

SEH是基于线程的异常处理,因为SEH链指针是在TEB(线程信息块)的第一个结构体成员(NT_TIB)的头部:fs:[0]

  • UEF(TopLevelEH,顶级异常处理)
1
2
3
LPTOP_LEVEL_EXCEPTION_FILTER WINAPI SetUnhandledExceptionFilter(
  _In_ LPTOP_LEVEL_EXCEPTION_FILTER lpTopLevelExceptionFilter
);
TopLevelEH 为线程顶级异常处理器,通常可以处理到所有线程消息发生的异常。
 
这里我们可以发现以上异常处理回调函数参数大都为 EXCEPTION_POINTERS 结构体,我们查询下它的结构:
1
2
3
4
typedef struct _EXCEPTION_POINTERS {
    PEXCEPTION_RECORD ExceptionRecord;
    PCONTEXT ContextRecord;
} EXCEPTION_POINTERS, *PEXCEPTION_POINTERS;
EXCEPTION_RECORD:
1
2
3
4
5
6
7
8
typedef struct _EXCEPTION_RECORD {
    DWORD    ExceptionCode;          //异常码,以STATUS_或EXCEPTION_开头,可自定义。(sehdef.inc)
    DWORD ExceptionFlags;            //异常标志。0可修复;1不可修复;2正在展开,不要试图修复
    struct _EXCEPTION_RECORD *ExceptionRecord; //指向嵌套的异常结构,通常是异常中又引发异常
    PVOID ExceptionAddress;          //异常发生的地址
    DWORD NumberParameters;      //下面ExceptionInformation所含有的dword数目
    ULONG_PTR ExceptionInformation[EXCEPTION_MAXIMUM_PARAMETERS]; //附加消息,如读或写冲突
} EXCEPTION_RECORD;
CONTEXT:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
typedef struct _CONTEXT {
 
    //
    // The flags values within this flag control the contents of
    // a CONTEXT record.
    //
    // If the context record is used as an input parameter, then
    // for each portion of the context record controlled by a flag
    // whose value is set, it is assumed that that portion of the
    // context record contains valid context. If the context record
    // is being used to modify a threads context, then only that
    // portion of the threads context will be modified.
    //
    // If the context record is used as an IN OUT parameter to capture
    // the context of a thread, then only those portions of the thread's
    // context corresponding to set flags will be returned.
    //
    // The context record is never used as an OUT only parameter.
    //
 
    DWORD ContextFlags;
 
    //
    // This section is specified/returned if CONTEXT_DEBUG_REGISTERS is
    // set in ContextFlags.  Note that CONTEXT_DEBUG_REGISTERS is NOT
    // included in CONTEXT_FULL.
    //
 
    DWORD   Dr0;
    DWORD   Dr1;
    DWORD   Dr2;
    DWORD   Dr3;
    DWORD   Dr6;
    DWORD   Dr7;
 
    //
    // This section is specified/returned if the
    // ContextFlags word contians the flag CONTEXT_FLOATING_POINT.
    //
 
    FLOATING_SAVE_AREA FloatSave;
 
    //
    // This section is specified/returned if the
    // ContextFlags word contians the flag CONTEXT_SEGMENTS.
    //
 
    DWORD   SegGs;
    DWORD   SegFs;
    DWORD   SegEs;
    DWORD   SegDs;
 
    //
    // This section is specified/returned if the
    // ContextFlags word contians the flag CONTEXT_INTEGER.
    //
 
    DWORD   Edi;
    DWORD   Esi;
    DWORD   Ebx;
    DWORD   Edx;
    DWORD   Ecx;
    DWORD   Eax;
 
    //
    // This section is specified/returned if the
    // ContextFlags word contians the flag CONTEXT_CONTROL.
    //
 
    DWORD   Ebp;
    DWORD   Eip;
    DWORD   SegCs;              // MUST BE SANITIZED
    DWORD   EFlags;             // MUST BE SANITIZED
    DWORD   Esp;
    DWORD   SegSs;
 
    //
    // This section is specified/returned if the ContextFlags word
    // contains the flag CONTEXT_EXTENDED_REGISTERS.
    // The format and contexts are processor specific
    //
 
    BYTE    ExtendedRegisters[MAXIMUM_SUPPORTED_EXTENSION];
 
} CONTEXT;
CONTEXT结构体大家应该都懂!
下面我们简单的写一个Demo,试验一下他们的处理顺序:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
// SEHTest.cpp : 定义控制台应用程序的入口点。
//
 
#include "stdafx.h"
//
#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
 
//
LONG __stdcall VEHandler(
    EXCEPTION_POINTERS *ExceptionInfo
    )
{
    printf("VEHandler\n");
    return EXCEPTION_CONTINUE_SEARCH;
}
 
LONG __stdcall VCHandler(
    EXCEPTION_POINTERS *ExceptionInfo
    )
{
    printf("VCHandler\n");
    ExceptionInfo->ContextRecord->Eip++;
    return EXCEPTION_CONTINUE_EXECUTION;
}
 
//
LONG NTAPI TopLevelExcepFilter(EXCEPTION_POINTERS *pExcepInfo)
{
    printf("TopLevelEHandler\n");
    return EXCEPTION_CONTINUE_EXECUTION;
}
//
LONG NTAPI SEHander(EXCEPTION_POINTERS *ExceptionInfo){
    //异常处理
    printf("SEHandler\n");
 
    return EXCEPTION_CONTINUE_SEARCH;
}
int _tmain(int argc, _TCHAR* argv[])
{
    AddVectoredExceptionHandler(0,VEHandler);
    AddVectoredContinueHandler(0,VCHandler);
    SetUnhandledExceptionFilter(&TopLevelExcepFilter);
    __try
    {
        __asm int 3
    }
    __except (SEHander(GetExceptionInformation()))
    {
    }
    system("Pause");
    return 0;
}
我们分别注册了VEH、VCH、 TopLevalEH 、SEH,我们看下结果:
他们处理异常的优先级为:
  1. 调试器
  2. VEH
  3. SEH
  4. UEF
  5. VCH
为什么调试器在第一个呢?因为我们发现在VS里面调试直接接管了异常。(/手动滑稽)
 

认识SEH链及处理机机制

我们上一章发现SEH链表位于结构体 NT_TIB 的第一个结构体成员,而结构体 NT_TIB 也位于TEB的第一个结构体成员,一句话而言SEH链表

指针位于寄存器 FS : [ 0 ] 的位置:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
ntdll!_TEB
   +0x000 NtTib            : _NT_TIB                //SEH链表头指针
   +0x01c EnvironmentPointer : Ptr32 Void
   +0x020 ClientId         : _CLIENT_ID
   +0x028 ActiveRpcHandle  : Ptr32 Void
   +0x02c ThreadLocalStoragePointer : Ptr32 Void
   +0x030 ProcessEnvironmentBlock : Ptr32 _PEB
   +0x034 LastErrorValue   : Uint4B
   +0x038 CountOfOwnedCriticalSections : Uint4B
   +0x03c CsrClientThread  : Ptr32 Void
   +0x040 Win32ThreadInfo  : Ptr32 Void
   +0x044 User32Reserved   : [26] Uint4B
   +0x0ac UserReserved     : [5] Uint4B
   +0x0c0 WOW32Reserved    : Ptr32 Void
   +0x0c4 CurrentLocale    : Uint4B
   +0x0c8 FpSoftwareStatusRegister : Uint4B
   +0x0cc SystemReserved1  : [54] Ptr32 Void
   +0x1a4 ExceptionCode    : Int4B
   +0x1a8 ActivationContextStack : _ACTIVATION_CONTEXT_STACK
   +0x1bc SpareBytes1      : [24] UChar
   +0x1d4 GdiTebBatch      : _GDI_TEB_BATCH
   +0x6b4 RealClientId     : _CLIENT_ID
   +0x6bc GdiCachedProcessHandle : Ptr32 Void
   +0x6c0 GdiClientPID     : Uint4B
   +0x6c4 GdiClientTID     : Uint4B
   +0x6c8 GdiThreadLocalInfo : Ptr32 Void
   +0x6cc Win32ClientInfo  : [62] Uint4B
   +0x7c4 glDispatchTable  : [233] Ptr32 Void
   +0xb68 glReserved1      : [29] Uint4B
   +0xbdc glReserved2      : Ptr32 Void
   +0xbe0 glSectionInfo    : Ptr32 Void
   +0xbe4 glSection        : Ptr32 Void
   +0xbe8 glTable          : Ptr32 Void
   +0xbec glCurrentRC      : Ptr32 Void
   +0xbf0 glContext        : Ptr32 Void
   +0xbf4 LastStatusValue  : Uint4B
   +0xbf8 StaticUnicodeString : _UNICODE_STRING
   +0xc00 StaticUnicodeBuffer : [261] Uint2B
   +0xe0c DeallocationStack : Ptr32 Void
   +0xe10 TlsSlots         : [64] Ptr32 Void
   +0xf10 TlsLinks         : _LIST_ENTRY
   +0xf18 Vdm              : Ptr32 Void
   +0xf1c ReservedForNtRpc : Ptr32 Void
   +0xf20 DbgSsReserved    : [2] Ptr32 Void
   +0xf28 HardErrorsAreDisabled : Uint4B
   +0xf2c Instrumentation  : [16] Ptr32 Void
   +0xf6c WinSockData      : Ptr32 Void
   +0xf70 GdiBatchCount    : Uint4B
   +0xf74 InDbgPrint       : UChar
   +0xf75 FreeStackOnTermination : UChar
   +0xf76 HasFiberData     : UChar
   +0xf77 IdealProcessor   : UChar
   +0xf78 Spare3           : Uint4B
   +0xf7c ReservedForPerf  : Ptr32 Void
   +0xf80 ReservedForOle   : Ptr32 Void
   +0xf84 WaitingOnLoaderLock : Uint4B
   +0xf88 Wx86Thread       : _Wx86ThreadState
   +0xf94 TlsExpansionSlots : Ptr32 Ptr32 Void
   +0xf98 ImpersonationLocale : Uint4B
   +0xf9c IsImpersonating  : Uint4B
   +0xfa0 NlsCache         : Ptr32 Void
   +0xfa4 pShimData        : Ptr32 Void
   +0xfa8 HeapVirtualAffinity : Uint4B
   +0xfac CurrentTransactionHandle : Ptr32 Void
   +0xfb0 ActiveFrame      : Ptr32 _TEB_ACTIVE_FRAME
   +0xfb4 SafeThunkCall    : UChar
   +0xfb5 BooleanSpare     : [3] UChar

我们直接访问 FS:[0] 即为TIB的结构体地址:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
typedef struct _NT_TIB {
    struct _EXCEPTION_REGISTRATION_RECORD *ExceptionList;
    PVOID StackBase;
    PVOID StackLimit;
    PVOID SubSystemTib;
#if defined(_MSC_EXTENSIONS)
    union {
        PVOID FiberData;
        DWORD Version;
    };
#else
    PVOID FiberData;
#endif
    PVOID ArbitraryUserPointer;
    struct _NT_TIB *Self;
} NT_TIB;
typedef NT_TIB *PNT_TIB;
如上述代码所示 结构体成员 ExceptionList 即为SEH链的头部指针 
So、 fs:[0]即为SEH链的指针,我们接着看对于SEH链的定义:
1
2
3
4
typedef struct _EXCEPTION_REGISTRATION_RECORD {
    struct _EXCEPTION_REGISTRATION_RECORD *Next;
    PEXCEPTION_ROUTINE Handler;
} EXCEPTION_REGISTRATION_RECORD;
第一个成员 Next 为指向下一个链表的指针,直到遇到 0xFFFFFFFF 结束,而结构体成员 Handler 为SEH的异常处理函数指针,我们接着看它对于
SEH异常处理函数 EXCEPTION_ROUTINE 的定义:
1
2
3
4
5
6
7
8
9
10
11
typedef
_IRQL_requires_same_
_Function_class_(EXCEPTION_ROUTINE)
EXCEPTION_DISPOSITION
NTAPI
EXCEPTION_ROUTINE (
    _Inout_ struct _EXCEPTION_RECORD *ExceptionRecord,
    _In_ PVOID EstablisherFrame,
    _Inout_ struct _CONTEXT *ContextRecord,
    _In_ PVOID DispatcherContext
    );
可以看到它对于SEH定义了以 EXCEPTION_DISPOSITION 为返回值的回调函数,我们接着查看它们的定义:
1
2
3
4
5
6
typedef enum _EXCEPTION_DISPOSITION {
    ExceptionContinueExecution,        //继续执行异常代码
    ExceptionContinueSearch,            //运行下一个异常处理器
    ExceptionNestedException,           //在OS内部使用
    ExceptionCollidedUnwind             //在OS内部使用
} EXCEPTION_DISPOSITION;
接着我们整理下它的异常处理过程:

从上图可以明白 SEH接收到异常然后处理,处理失败返回 ExceptionContinueSearch(1) 继续运行下一个Handler处理,直到返回
ExceptionContinueSearch(0),若是一直处理不了直到遇到0xFFFFFFFF 把异常交给UEF处理。

 

SEH的注册及SEH的删除

通过上述的整理就可以知道,SEH的异常处理的定义为:

1
2
3
4
5
EXCEPTION_DISPOSITION NTAPI _except_handler(
    _Inout_ struct _EXCEPTION_RECORD *ExceptionRecord,    //指向包含异常信息的EXCEPTION_RECORD结构
    _In_ PVOID EstablisherFrame,        //指向该异常相关的EXCEPTION_REGISTRATION结构
    _Inout_ struct _CONTEXT *ContextRecord,    //指向线程环境CONTEXT结构的指针
    _In_ PVOID DispatcherContext)

现在要来谈SEH的注册了,我们的操作为:

1
2
3
push @_except_handler    ;异常处理器
push dwod ptr fs:[0]     ;取出 SEH链表头
mov dwod ptr fs:[0],esp  ;添加链表
 

卸载SEH:

1
2
pop dword ptr fs:[0]    ;还原链表头
add esp,4    ;删除 异常处理器
这些操作很简单,很多前辈们帖子里都有,代码可能不一样,反正是一个意思就行。
 

异常的种类和常见的异常代码

这里是MSDN中定义的异常代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
/*lint -save -e767 */  
#define STATUS_WAIT_0                           ((DWORD   )0x00000000L) 
#define STATUS_ABANDONED_WAIT_0          ((DWORD   )0x00000080L)    
#define STATUS_USER_APC                  ((DWORD   )0x000000C0L)    
#define STATUS_TIMEOUT                   ((DWORD   )0x00000102L)    
#define STATUS_PENDING                   ((DWORD   )0x00000103L)    
#define DBG_EXCEPTION_HANDLED            ((DWORD   )0x00010001L)    
#define DBG_CONTINUE                     ((DWORD   )0x00010002L)    
#define STATUS_SEGMENT_NOTIFICATION      ((DWORD   )0x40000005L)    
#define STATUS_FATAL_APP_EXIT            ((DWORD   )0x40000015L)    
#define DBG_TERMINATE_THREAD             ((DWORD   )0x40010003L)    
#define DBG_TERMINATE_PROCESS            ((DWORD   )0x40010004L)    
#define DBG_CONTROL_C                    ((DWORD   )0x40010005L)    
#define DBG_PRINTEXCEPTION_C             ((DWORD   )0x40010006L)    
#define DBG_RIPEXCEPTION                 ((DWORD   )0x40010007L)    
#define DBG_CONTROL_BREAK                ((DWORD   )0x40010008L)    
#define DBG_COMMAND_EXCEPTION            ((DWORD   )0x40010009L)    
#define STATUS_GUARD_PAGE_VIOLATION      ((DWORD   )0x80000001L)    
#define STATUS_DATATYPE_MISALIGNMENT     ((DWORD   )0x80000002L)    
#define STATUS_BREAKPOINT                ((DWORD   )0x80000003L)    
#define STATUS_SINGLE_STEP               ((DWORD   )0x80000004L)    
#define STATUS_LONGJUMP                  ((DWORD   )0x80000026L)    
#define STATUS_UNWIND_CONSOLIDATE        ((DWORD   )0x80000029L)    
#define DBG_EXCEPTION_NOT_HANDLED        ((DWORD   )0x80010001L)    
#define STATUS_ACCESS_VIOLATION          ((DWORD   )0xC0000005L)    
#define STATUS_IN_PAGE_ERROR             ((DWORD   )0xC0000006L)    
#define STATUS_INVALID_HANDLE            ((DWORD   )0xC0000008L)    
#define STATUS_INVALID_PARAMETER         ((DWORD   )0xC000000DL)    
#define STATUS_NO_MEMORY                 ((DWORD   )0xC0000017L)    
#define STATUS_ILLEGAL_INSTRUCTION       ((DWORD   )0xC000001DL)    
#define STATUS_NONCONTINUABLE_EXCEPTION  ((DWORD   )0xC0000025L)    
#define STATUS_INVALID_DISPOSITION       ((DWORD   )0xC0000026L)    
#define STATUS_ARRAY_BOUNDS_EXCEEDED     ((DWORD   )0xC000008CL)    
#define STATUS_FLOAT_DENORMAL_OPERAND    ((DWORD   )0xC000008DL)    
#define STATUS_FLOAT_DIVIDE_BY_ZERO      ((DWORD   )0xC000008EL)    
#define STATUS_FLOAT_INEXACT_RESULT      ((DWORD   )0xC000008FL)    
#define STATUS_FLOAT_INVALID_OPERATION   ((DWORD   )0xC0000090L)    
#define STATUS_FLOAT_OVERFLOW            ((DWORD   )0xC0000091L)    
#define STATUS_FLOAT_STACK_CHECK         ((DWORD   )0xC0000092L)    
#define STATUS_FLOAT_UNDERFLOW           ((DWORD   )0xC0000093L)    
#define STATUS_INTEGER_DIVIDE_BY_ZERO    ((DWORD   )0xC0000094L)    
#define STATUS_INTEGER_OVERFLOW          ((DWORD   )0xC0000095L)    
#define STATUS_PRIVILEGED_INSTRUCTION    ((DWORD   )0xC0000096L)    
#define STATUS_STACK_OVERFLOW            ((DWORD   )0xC00000FDL)    
#define STATUS_DLL_NOT_FOUND             ((DWORD   )0xC0000135L)    
#define STATUS_ORDINAL_NOT_FOUND         ((DWORD   )0xC0000138L)    
#define STATUS_ENTRYPOINT_NOT_FOUND      ((DWORD   )0xC0000139L)    
#define STATUS_CONTROL_C_EXIT            ((DWORD   )0xC000013AL)    
#define STATUS_DLL_INIT_FAILED           ((DWORD   )0xC0000142L)    
#define STATUS_FLOAT_MULTIPLE_FAULTS     ((DWORD   )0xC00002B4L)    
#define STATUS_FLOAT_MULTIPLE_TRAPS      ((DWORD   )0xC00002B5L)    
#define STATUS_REG_NAT_CONSUMPTION       ((DWORD   )0xC00002C9L)    
#define STATUS_HEAP_CORRUPTION           ((DWORD   )0xC0000374L)    
#define STATUS_STACK_BUFFER_OVERRUN      ((DWORD   )0xC0000409L)    
#define STATUS_INVALID_CRUNTIME_PARAMETER ((DWORD   )0xC0000417L)    
#define STATUS_ASSERTION_FAILURE         ((DWORD   )0xC0000420L)    
#if defined(STATUS_SUCCESS) || (_WIN32_WINNT > 0x0500) || (_WIN32_FUSION >= 0x0100) 
#define STATUS_SXS_EARLY_DEACTIVATION    ((DWORD   )0xC015000FL)    
#define STATUS_SXS_INVALID_DEACTIVATION  ((DWORD   )0xC0150010L)    
#endif 
/*lint -restore */ 
下面我们举例几个常用到的异常代码:

STATUS_ACCESS_VIOLATION(0xC0000005)

非法访问异常,试图访问不存在、没有访问权限,或是试图向没有写入权限的地址或是向内核区域写入发生的异常。

STATUS_BREAKPOINT(0x80000003)

断点异常,这个不用提了吧,就是我们常说的INT 3(0xCC)断点

STATUS_ILLEGAL_INSTRUCTION(0xC000001D)

CPU遇到无法解析的指令时发生该异常

STATUS_INTEGER_DIVIDE_BY_ZERO(0xC0000094)

除法中,分母为0时发生的异常

STATUS_SINGLE_STEP

单步调试异常,在EFlag寄存器把TF标志位置1发生的单步调试异常。

除此之外,也有很多平时可以遇到的,我只是举例了几个简单的。

 

SEH的异常处理

我这里就随便写个Demo了:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
// SEHList.cpp : 定义控制台应用程序的入口点。
//
 
#include "stdafx.h"
//
#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
DWORD dwTest;
EXCEPTION_DISPOSITION NTAPI ExceptHandler(
    _Inout_ struct _EXCEPTION_RECORD *ExceptionRecord,
    _In_ PVOID EstablisherFrame,
    _Inout_ struct _CONTEXT *ContextRecord,
    _In_ PVOID DispatcherContext){
    printf("进入异常处理\n");
    printf("异常地址:%X<异常代码:%X>\n", ExceptionRecord->ExceptionAddress,
        ExceptionRecord->ExceptionCode);
    ContextRecord->Eax = (DWORD)(&dwTest);
    return ExceptionContinueExecution;
}
 
int _tmain(int argc, _TCHAR* argv[])
{
    printf("注册SEH\n");
    __asm{
        lea eax, ExceptHandler
            push eax
            push fs : [0]
            mov dword ptr fs : [0], ESP
    }
    __asm{
        xor eax,eax
            mov dword ptr[eax],1234h
    }
    printf("删除SEH\n");
    __asm{
        pop dword ptr fs : [0]
            add esp, 4
    }
    printf("dwTest=%X\n", dwTest);
    getchar();
    return 0;
}
运行结果:

转自https://bbs.pediy.com/thread-223939.htm

从TEB到PEB再到SEH(二)的更多相关文章

  1. 从TEB到PEB再到SEH(一)

    什么是TEB? TEB(Thread Environment Block,线程环境块) 线程环境块中存放着进程中所有线程的各种信息 这里我们了解到了TEB即为线程环境块, 进程中每一条线程都对应着的自 ...

  2. JAVA基础再回首(二十五)——Lock锁的使用、死锁问题、多线程生产者和消费者、线程池、匿名内部类使用多线程、定时器、面试题

    JAVA基础再回首(二十五)--Lock锁的使用.死锁问题.多线程生产者和消费者.线程池.匿名内部类使用多线程.定时器.面试题 版权声明:转载必须注明本文转自程序猿杜鹏程的博客:http://blog ...

  3. Session 知识点再整理(二) 自定义 Session 存储机制

    对于访问量大的网站,用默认的 Session 存储方式(以文件存储)不适合,因为文件的 I/O 开销会非常大,另外 Session 机制本身使 Session 不能跨机访问,在 Web 集群中无法达到 ...

  4. http协议再复习(二)

    HTTP和HTTPS HTTP协议(HyperText Transfer Protocol,超文本传输协议):是一种发布和接收 HTML页面的方法. HTTPS(Hypertext Transfer ...

  5. Python 初级 5 判断再判断(二)

    复习: 分支:完成测试并根据结果做出判断称为分支. 代码块:一行或放在一起的多行代码 缩进:一个代码行稍稍靠右一点 关系操作符(比较操作符):==, >, >=, <, <=, ...

  6. 再学ajax--第二天 | 基于php+mysql+ajax的表单注册、登录、注销

    写在前面 ajax学习到了第二天,这次是用第一天封装的ajax函数,后端使用了php+mysql实现基本的注册,登录,注销. php是我前几个月get到的技能,我已经学习到了面向对象,知道各修饰符的含 ...

  7. React.js再探(二)

    上文中说到了组件了. 我们使用组件的目的最大莫过于复用,提供生产效率. 那么,这时候组件就应该能够提供一些”api”出来,让开发者去定义在不同场景下的不同表现,比如,行为或外观等. 而这些“api”就 ...

  8. 结构化异常SEH处理机制详细介绍(二)

    本文将全面阐述__try,__except,__finally,__leave异常模型机制,它也即是Windows系列操作系统平台上提供的SEH模型.SEH实际包含两个主要功能:结束处理(termin ...

  9. KPROCESS IDT PEB Ldr 《寒江独钓》内核学习笔记(3)

    继续上一篇(2)未完成的研究,我们接下来学习 KPROCESS这个数据结构. 1. 相关阅读材料 <深入理解计算机系统(原书第2版)> 二. KPROCESS KPROCESS,也叫内核进 ...

随机推荐

  1. Array : 数组的常用方法

    数组常用方法 对象通用方法 1.toLocalString()  数组中的每个元素都会调用toLocalString(),然后以逗号隔开, 拼接为字符串: 2.toString() 数组中的每个元素都 ...

  2. 使用StringBuilder构建字符串

    使用StringBuilder构建字符串确实可以提高效率,比“+”要高效不少.但使用时也有一些坑: 首先,我们指定一个StringBuilder,并设置其长度. StringBuilder build ...

  3. mssql server 排序 以及like语句

    当我们按照某个字段排序时,通常使用order by语句,如果该字段存在null值,则会把null值的这条放到最上面, 那我们是否有办法解决呢? 答案是肯定的: ORDER BY CASE WHEN O ...

  4. GridPanel列头带有复选框的列

    由于工作需要,封装了ExtJS4,GridPanel列头带有复选框的列, 代码如下: /** * 列头带有复选框的列 * */ Ext.define("org.pine.widget.Che ...

  5. springCloud学习6(Spring Cloud Sleuth 分布式跟踪)

    springcloud 总集:https://www.tapme.top/blog/detail/2019-02-28-11-33 前言   在第四篇和第五篇中提到一个叫关联 id的东西,用这个东西来 ...

  6. Flink原理、实战与性能优化读书笔记

    第一章 ApacheFlink介绍 一.Flink优势 1. 目前唯一同时支持高吞吐.低延迟.高性能的分布式流式数据处理框架 2. 支持事件事件概念 3. 支持有状态计算,保持了事件原本产生的时序性, ...

  7. 基于web站点的xss攻击

    XSS(Cross Site Script),全称跨站脚本攻击,为了与 CSS(Cascading Style Sheet) 有所区别,所以在安全领域称为 XSS. XSS 攻击,通常指黑客通过 HT ...

  8. day 08作业 预科

    有如下值集合 [11,22,33,44,55,66,77,88,99,90...],将所有大于 66 的值保存至字典的第一个key中,将小于 66 的值保存至第二个key的值中 lt=[11,22,3 ...

  9. map put相同的key

    Map添加相同的key 2018年09月09日 10:37:12 Airport_Le 阅读数:6479   HashMap是的key是不能重复的,如果有相同的key,最后一个key对应的value会 ...

  10. Java开发环境之JDK

    查看更多Java开发环境配置,请点击<Java开发环境配置大全> 零章:JDK安装教程 1)下载JDK安装包 http://www.oracle.com/technetwork/java/ ...