Q-learning之一维世界的简单寻宝
Q-learning的算法:
(1)先初始化一个Q table,Q table的行数是state的个数,列数是action的个数。
(2)先随机选择一个作为初始状态S1,根据一些策略选择此状态下的动作,比如贪心策略,假设选择的动作为A1。
(3)判断由A1动作之后的状态S2是不是终止状态,如果是终止状态,返回的reward,相当于找到了宝藏,游戏结束,如果不是最终状态,在S2状态时选择此时使Q值最大的action作为下一步的动作。可以得到一个实际的Q值。Q(S1,A1)=R+λ*maxQ(S2)。更新Q table中的Q(S1,A1)。Q(S1,A1)=Q(S1,A1)+α*[R+λ*maxQ(S2)-Q(S1,A1)], []里面是实际的Q值减去估计的Q值。
简单的代码如下:
#coding=utf-8
import numpy as np
import pandas as pd
import time
#计算机产生一段伪随机数,每次运行的时候产生的随机数都是一样的
np.random.seed(2)
#创建几个全局变量
N_STATES=6#状态的个数,一共有六个状态0-5状态
ACTIONS=["left","right"]#action只有两个左和右
EPSILON=0.9#贪心策略
ALPHA=0.1#学习率
LAMBDA=0.9#discount factor
MAX_EPISODEs=10#一共训练10次
FRESH_TIME=0.1
#初始化一个Q-table,我觉得Q-table里面的值初始化成什么样子应该不影响最终的结果
def build_q_table(n_states,actions):
table=pd.DataFrame(
np.zeros((n_states,len(actions))),
columns=actions,
)
# print(table)
return(table)
# build_q_table(N_STATES,ACTIONS)
def choose_action(state,q_table):
state_action=q_table.iloc[state,:]
if (np.random.uniform()>EPSILON) or (state_action.all()==0):
action_name=np.random.choice(ACTIONS)
else:
action_name=state_action.idxmax()
return action_name
def get_env_feedback(s,A):
if A=="right":
if s==N_STATES-2:
s_="terminal"
R=1
else:
s_=s+1
R=0
else:
R=0
if s==0:
s_=s
else:
s_=s-1
return s_,R
def update_env(S,episode,step_couter):
env_list=["-"]*(N_STATES-1)+["T"]
if S=="terminal":
interaction="Episode %s:total_steps=%s"%(episode+1,step_couter)
print("\r{}".format(interaction),end='')
time.sleep(2)
print('\r ',end='')
else:
env_list[S]=''
interaction=''.join(env_list)
print("\r{}".format(interaction),end='')
time.sleep(FRESH_TIME)
def rl():
#先初始化一个Q table
q_table=build_q_table(N_STATES,ACTIONS)
for episode in range(MAX_EPISODEs):
step_counter=0
#选择一个初始的S
S=0
is_terminal=False
update_env(S,episode,step_counter)
#如果S不是终止状态的话,选择动作,得到环境给出的一个反馈S_(新的状态)和R(奖励)
while not is_terminal:
A=choose_action(S,q_table)
S_,R=get_env_feedback(S,A)
q_predict=q_table.ix[S,A]
if S_!="terminal":
#算出来实际的Q值
q_target=R+LAMBDA*q_table.iloc[S_,:].max()
else:
q_target=R
is_terminal=True
q_table.ix[S,A]+=ALPHA*(q_target-q_predict)
S=S_
update_env(
S,episode,step_counter+1
)
step_counter=step_counter+1
return q_table if __name__=="__main__":
q_table=rl()
print("\r\nQ-table:\n")
print(q_table)
Q-learning之一维世界的简单寻宝的更多相关文章
- 如何用简单例子讲解 Q - learning 的具体过程?
作者:牛阿链接:https://www.zhihu.com/question/26408259/answer/123230350来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明 ...
- 强化学习9-Deep Q Learning
之前讲到Sarsa和Q Learning都不太适合解决大规模问题,为什么呢? 因为传统的强化学习都有一张Q表,这张Q表记录了每个状态下,每个动作的q值,但是现实问题往往极其复杂,其状态非常多,甚至是连 ...
- TensorflowTutorial_一维数据构造简单CNN
使用一维数据构造简单卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 神经网络对于一维数据非常重要,时序数据集.信号处理数据集和一些文本嵌入数据集都是一维数据,会频繁的使用到神经网 ...
- 强化学习_Deep Q Learning(DQN)_代码解析
Deep Q Learning 使用gym的CartPole作为环境,使用QDN解决离散动作空间的问题. 一.导入需要的包和定义超参数 import tensorflow as tf import n ...
- 攻防世界PWN简单题 level0
攻防世界PWN简单题 level0 开始考验栈溢出的相关知识了 Checksec 一下文件 看看都开了什么保护 和 是多少位的程序 发现是64位的程序, 扔进IDA64.IDA YYDS.. 进入主函 ...
- 攻防世界PWN简单题 level2
攻防世界PWN简单题 level2 此题考验的是对ROP链攻击的基础 万事开头PWN第一步checksec 一下 32位的小端程序,扔进IDA 进入函数,找出栈溢出漏洞. 又是这个位置的栈溢出,rea ...
- 增强学习(五)----- 时间差分学习(Q learning, Sarsa learning)
接下来我们回顾一下动态规划算法(DP)和蒙特卡罗方法(MC)的特点,对于动态规划算法有如下特性: 需要环境模型,即状态转移概率\(P_{sa}\) 状态值函数的估计是自举的(bootstrapping ...
- Deep learning:四十一(Dropout简单理解)
前言 训练神经网络模型时,如果训练样本较少,为了防止模型过拟合,Dropout可以作为一种trikc供选择.Dropout是hintion最近2年提出的,源于其文章Improving neural n ...
- python库的tkinter带你进入GUI世界(计算器简单功能)
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 一个处女座的程序猿 PS:如有需要Python学习资料的小伙伴可以加 ...
随机推荐
- [原创]K8tools 20191111/K8工具合集
K8tools 20191111 声明: 工具仅供安全研究或授权渗透,非法用途后果自负. 下载: https://github.com/k8gege/K8tools PS: 不定期更新,文件比较大,可 ...
- 【chromium】cef是如何进行版本控制的?
搜了搜cef相关的文章,内容大多是 如何下载源码,如何编译,还有一些源码剖析,但是很少有人说明对cef进行开发时如何保存修改,使用git进行修改后的版本控制. cef是怎么做的? cef源码分为两个部 ...
- Go学习笔记之Map
Go学习笔记之Map Map 引用类型,哈希表.map的key必须可以比较相等,除了slice, map, function的内建类型都可以作为key.struct类型不包含上述字段,也可作为key. ...
- Scala Type Parameters 2
类型关系 Scala 支持在泛型类上使用型变注释,用来表示复杂类型.组合类型的子类型关系间的相关性 协变 +T,变化方向相同,通常用在生产 假设 A extends T, 对于 Clazz[+T],则 ...
- 【题解】有限制的排列 [51nod1296]
[题解]有限制的排列 [51nod1296] 传送门:有限制的排列 \([51nod1296]\) [题目描述] 给出 \(n,m_1,m_2\) 和 \(\{a[1],a[2]...a[m_1]\} ...
- VS2019 Nuget找不到包的问题处理
VS不记得改了什么设置之后,发现找不到EF 解决办法 1.点击右侧的设置按钮 2.弹出窗中左侧树形结构选择“程序包源”,再点击右上方的添加按钮 输入一下信息:https://www.nuget.org ...
- html引入公共模块
如果没有母版页,那么大量相同布局的页面会有很多相同的代码,那么这就提到了一个概念,叫重用性:可以将相同布局的代码放在一个单独的文件,里面写一些公共模块,那么在其他页面只需要在指定位置引入他们就可以了写 ...
- delegate、Action、Func的用法
委托的特点 委托类似于 C++ 函数指针,但它们是类型安全的. 委托允许将方法作为参数进行传递. 委托可用于定义回调方法. 委托可以链接在一起. delegate的用法 delegate void B ...
- Java自学-接口与继承 接口
设计Java的接口 在设计LOL的时候,进攻类英雄有两种,一种是进行物理系攻击,一种是进行魔法系攻击 这时候,就可以使用接口来实现这个效果. 接口就像是一种约定,我们约定某些英雄是物理系英雄,那么他们 ...
- OpenGL 中的三维纹理操作
#define _CRT_SECURE_NO_WARNINGS #include <gl/glut.h> #include <stdio.h> #include <std ...