关于二维线段树,ta死了

先来看看两种二维线段树的打法

1.四叉树

然而ta死了,ta是$\Theta (n)$的,加上线段树的常数,$T$飞稳

2.线段树套线段树

我尽量画出来...

图中每个方块是一棵线段树

画完长这样(你们凑合看吧,作者已经半卒了)

局部放大图

现在每个圆点代表真正的一个点

接下来的讲解以今天的题为例(题面就不放了)

先说区间修改

假设我们现在要给图中的$9$个绿点赋值(仔细找,相信你能找到

按照一维线段树的做法,我们会修改这六个绿点

但这是$\Theta (NlogN)$的,会$T$

我们可以是这对蓝点进行操作

然后我们就可以只修改图中的四个绿点了

代码:

struct Tree
{
struct tree
{
int tag;
}t[maxn<<2];
void down(int k)
{
int tmp=t[k].tag;
t[l(k)].tag=max(t[l(k)].tag,tmp);
t[r(k)].tag=max(t[r(k)].tag,tmp);
}
void change(int k,int l,int r,int L,int R,int v)
{
if(L<=l&&r<=R){t[k].tag=v;return;}
down(k);int mid=(l+r)>>1;
if(L<=mid) change(l(k),l,mid,L,R,v);
if(mid<R) change(r(k),mid+1,r,L,R,v);
}
}T[maxn<<2];
void change(int k,int l,int r,int L,int R,int ll,int rr,int v)
{
if(L<=l&&r<=R){T[k].change(1,1,maxn-1,ll,rr,v);return;}
int mid=(l+r)>>1;
if(L<=mid) change(l(k),l,mid,L,R,ll,rr,v);
if(mid<R) change(r(k),mid+1,r,L,R,ll,rr,v);
}

接下来是单点查询

我们要查图中的绿点

但是我们并不能只查询这一个点,因为下图中三个黄色的方块里都有关于这个绿点的信息

所以我们只要一边向下走一边查询取$max/min$就可以了

代码:

int query(int k,int l,int r,int p)
{
if(l==r) return t[k].tag;
down(k);int mid=(l+r)>>1;
if(p<=mid) return query(l(k),l,mid,p);
else return query(r(k),mid+1,r,p);
}
int query(int k,int l,int r,int p1,int p2)
{
if(l==r){return T[k].query(1,1,maxn-1,p2);}
int ans=T[k].query(1,1,maxn-1,p2),mid=(l+r)>>1;
if(p1<=mid) return max(ans,query(l(k),l,mid,p1,p2));
else return max(ans,query(r(k),mid+1,r,p1,p2));
}

以及完整代码:

struct Tree
{
struct tree
{
int tag;
}t[maxn<<2];
void down(int k)
{
int tmp=t[k].tag;
t[l(k)].tag=max(t[l(k)].tag,tmp);
t[r(k)].tag=max(t[r(k)].tag,tmp);
}
void change(int k,int l,int r,int L,int R,int v)
{
if(L<=l&&r<=R){t[k].tag=v;return;}
down(k);int mid=(l+r)>>1;
if(L<=mid) change(l(k),l,mid,L,R,v);
if(mid<R) change(r(k),mid+1,r,L,R,v);
}
int query(int k,int l,int r,int p)
{
if(l==r) return t[k].tag;
down(k);int mid=(l+r)>>1;
if(p<=mid) return query(l(k),l,mid,p);
else return query(r(k),mid+1,r,p);
}
}T[maxn<<2];
void change(int k,int l,int r,int L,int R,int ll,int rr,int v)
{
if(L<=l&&r<=R){T[k].change(1,1,maxn-1,ll,rr,v);return;}
int mid=(l+r)>>1;
if(L<=mid) change(l(k),l,mid,L,R,ll,rr,v);
if(mid<R) change(r(k),mid+1,r,L,R,ll,rr,v);
}
int query(int k,int l,int r,int p1,int p2)
{
if(l==r){return T[k].query(1,1,maxn-1,p2);}
int ans=T[k].query(1,1,maxn-1,p2),mid=(l+r)>>1;
if(p1<=mid) return max(ans,query(l(k),l,mid,p1,p2));
else return max(ans,query(r(k),mid+1,r,p1,p2));
}

关于其他操作,有空在更(基本没空了

二维$MLE$线段树的更多相关文章

  1. 【BZOJ-3196】二逼平衡树 线段树 + Splay (线段树套平衡树)

    3196: Tyvj 1730 二逼平衡树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2271  Solved: 935[Submit][Stat ...

  2. 【BZOJ 3196】二逼平衡树 线段树套splay 模板题

    我写的是线段树套splay,网上很多人写的都是套treap,然而本蒟蒻并不会treap 奉上sth神犇的模板: //bzoj3196 二逼平衡树,支持修改某个点的值,查询区间第k小值,查询区间某个值排 ...

  3. bzoj 3196 && luogu 3380 JoyOI 1730 二逼平衡树 (线段树套Treap)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3196 题面; 3196: Tyvj 1730 二逼平衡树 Time Limit: 10 Se ...

  4. BZOJ3196二逼平衡树——线段树套平衡树(treap)

    此为平衡树系列最后一道:二逼平衡树您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名2.查询区间内排名为k的值3.修改某一位值上的数值4.查询 ...

  5. BZOJ5291/洛谷P4458/LOJ#2512 [Bjoi2018]链上二次求和 线段树

    原文链接http://www.cnblogs.com/zhouzhendong/p/9031130.html 题目传送门 - LOJ#2512 题目传送门 - 洛谷P4458 题目传送门 - BZOJ ...

  6. BZOJ - 3196 Tyvj 1730 二逼平衡树 (线段树套treap)

    题目链接 区间线段树套treap,空间复杂度$O(nlogn)$,时间复杂度除了查询区间k大是$O(log^3n)$以外都是$O(log^2n)$的. (据说线段树套线段树.树状数组套线段树也能过?) ...

  7. 【bzoj3196】Tyvj 1730 二逼平衡树 线段树套Treap

    题目描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:1.查询k在区间内的排名2.查询区间内排名为k的值3.修改某一位值上的数值4.查询k在区间内的前驱(前驱定义 ...

  8. NYOJ 116 士兵杀敌(二)【线段树 单点更新】

    题意:题意非常清楚: 策略:如题. 这道题就是简单的线段树应用,据说还能够用树状数组来做,等我学了之后在说吧. 代码: #include<stdio.h> #include<stri ...

  9. [bzoj3196]Tyvj 1730 二逼平衡树——线段树套平衡树

    题目 Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名为k的值 3.修改某一位值上的数值 4.查 ...

随机推荐

  1. xxx商城之商品管理

  2. 可分离滤波器设计高斯滤波 CUDA程序优化, 实验记录

    环境:RTX2060 ,1920X1080p ,循环10次, kernal_size=8 一 .测试前128个线程拷贝到dst数据的性能  ,只测试行卷积, block=(128+2r)X1 1. 使 ...

  3. cgal的安装、编译

    1.下载地址 https://www.cgal.org/2019/03/29/cgal414/ https://github.com/CGAL/cgal/releases/tag/releases%2 ...

  4. 如何使用NPM?CNPM又是什么?

    背景介绍 什么是npm? npm(node package manager)是nodejs的包管理器,用于node插件管理(包括安装.卸载.管理依赖等), NPM是随同NodeJS一起安装的包管理工具 ...

  5. self attention pytorch代码

    实现细节; 1.embedding 层 2.positional encoding层:添加位置信息 3,MultiHeadAttention层:encoder的self attention 4,sub ...

  6. Referer和空Referer

    参考CSDN 原文:https://blog.csdn.net/hxl188/article/details/38964743 Referer和空Referer 最近公司有个接口需要针对几个域名加白名 ...

  7. tkinter 按钮响应函数传值

    tkinter 中的Button组件的响应函数如何传入参数,可能非常困扰新手,这里记录一下. 步骤: 1. 写好响应函数(形参设置好) 2. 在Button command 设置形式:command ...

  8. Android JSBridge原理与实现

    在Android中,JSBridge已经不是什么新鲜的事物了,各家的实现方式也略有差异.大多数人都知道WebView存在一个漏洞,详细信息见你不知道的 Android WebView 使用漏洞,虽然该 ...

  9. 迷你商城后台管理系统————stage1需求分析

    PS:迷你商城后台管理系统---需求分析.docx下载~click me 迷你商城后台管理系统-- 需求分析 1. 引言 作为互联网热潮的崛起,消费者们的普遍差异化,实体商城要想在互联网的浪潮中继续发 ...

  10. onvirt安装linux系统

    情况说明: (1)本文接前文kvm虚拟化学习笔记(十九)之convirt集中管理平台搭建,采用convirt虚拟化平台安装linux操作系统的过程,这个过程中需要对convirt进行一系列的配置才能真 ...