转自:https://blog.csdn.net/zzaric/article/details/80641786

应用场景如下:

公司内有多个业务系统,由于业务系统内有向用户发送消息的服务,所以通过统一消息系统对外暴露微服务接口供外部业务系统调用,所有公司内业务系统的消息(短信,APP,微信)推送都由统一消息系统去推送,短信推送需要走外部短信通道商去发送短信,APP和微信走内部系统的push服务器,但是不管是短信通道商还是内部push服务器都会有每秒上限的控制。在这假设n/s条。

以下是统一消息系统内部的具体的限流方案:

时间限流队列如下:

1.统一消息中心接受消息m条,假定这m个待推送消息的推送时间为t1。

2.因为时间限流队列的长度是n条,现在有m条要进时间限流队列,所以队列里必须要有n-m个长度才能保证新进来的m条待发送消息才能进入队列。

3.所以判定队列里第n-m对应的时间点要比这m条待发送消息的发送时间小于1个单位秒时,即 t1-t2>1s,才能保证n/s条的速率。

4.通过第3部t1-t2>1s?判断是否满足新来的m条待发送消息的发送时间是否比时间限流队列第n-m条对应的时间大于1个单位秒时,如果大于1个单位秒时,说明t1时间对应的上一秒对应的n条消息都已经发送,这时通过lpush命令循环将m条待发送消息推入时间限流队列。如有没有主线程睡眠1/10个秒时,轮询执行步骤一,直至m套待发送消息对应的发送时间t1进入至时间限流队列。

5.执行时间滑动窗口步骤,截取redis队列0 - n的长度数据,如图所示。

基于redis+lua实现高并发场景下的秒杀限流解决方案的更多相关文章

  1. Redis+Lua解决高并发场景抢购秒杀问题

    之前写了一篇PHP+Redis链表解决高并发下商品超卖问题,今天介绍一些如何使用PHP+Redis+Lua解决高并发下商品超卖问题. 为何要使用Lua脚本解决商品超卖的问题呢? Redis在2.6版本 ...

  2. HttpClient在高并发场景下的优化实战

    在项目中使用HttpClient可能是很普遍,尤其在当下微服务大火形势下,如果服务之间是http调用就少不了跟http客户端找交道.由于项目用户规模不同以及应用场景不同,很多时候可能不需要特别处理也. ...

  3. C++高并发场景下读多写少的解决方案

    C++高并发场景下读多写少的解决方案 概述 一谈到高并发的解决方案,往往能想到模块水平拆分.数据库读写分离.分库分表,加缓存.加mq等,这些都是从系统架构上解决.单模块作为系统的组成单元,其性能好坏也 ...

  4. C++高并发场景下读多写少的优化方案

    概述 一谈到高并发的优化方案,往往能想到模块水平拆分.数据库读写分离.分库分表,加缓存.加mq等,这些都是从系统架构上解决.单模块作为系统的组成单元,其性能好坏也能很大的影响整体性能,本文从单模块下读 ...

  5. Qunar机票技术部就有一个全年很关键的一个指标:搜索缓存命中率,当时已经做到了>99.7%。再往后,每提高0.1%,优化难度成指数级增长了。哪怕是千分之一,也直接影响用户体验,影响每天上万张机票的销售额。 在高并发场景下,提供了保证线程安全的对象、方法。比如经典的ConcurrentHashMap,它比起HashMap,有更小粒度的锁,并发读写性能更好。线程安全的StringBuilder取代S

    Qunar机票技术部就有一个全年很关键的一个指标:搜索缓存命中率,当时已经做到了>99.7%.再往后,每提高0.1%,优化难度成指数级增长了.哪怕是千分之一,也直接影响用户体验,影响每天上万张机 ...

  6. 【转】记录PHP、MySQL在高并发场景下产生的一次事故

    看了一篇网友日志,感觉工作中值得借鉴,原文如下: 事故描述 在一次项目中,上线了一新功能之后,陆陆续续的有客服向我们反应,有用户的个别道具数量高达42亿,但是当时一直没有到证据表示这是,确实存在,并且 ...

  7. 高并发场景下System.currentTimeMillis()的性能问题的优化 以及SnowFlakeIdWorker高性能ID生成器

    package xxx; import java.sql.Timestamp; import java.util.concurrent.*; import java.util.concurrent.a ...

  8. 高并发场景下System.currentTimeMillis()的性能问题的优化

    高并发场景下System.currentTimeMillis()的性能问题的优化 package cn.ucaner.alpaca.common.util.key; import java.sql.T ...

  9. MySQL在大数据、高并发场景下的SQL语句优化和"最佳实践"

    本文主要针对中小型应用或网站,重点探讨日常程序开发中SQL语句的优化问题,所谓“大数据”.“高并发”仅针对中小型应用而言,专业的数据库运维大神请无视.以下实践为个人在实际开发工作中,针对相对“大数据” ...

随机推荐

  1. Docker网络配置、Docker部署分布式项目

    目标 1.Docker网络配置 2.Docker部署SpringCloud项目 Docker网络配置 Docker网络模式介绍 Docker在创建容器时有四种网络模式:bridge/host/cont ...

  2. Django3 的服务器搭建

    进入python虚拟环境 执行以下 命令 source env/bin/active 激活并切换虚拟环境 安装 pip3 install django 创建django项目 django-admin ...

  3. Vuejs组件基础

    一.概念 ①组件就是对局部视图的封装,组件思想就是把一个很大的复杂的 Web 页面视图给拆分成一块一块的组件视图,然后利用某种特定的方式把它们组织到一起完成完整的 Web 应用构建. ②目前主流的前端 ...

  4. Redis 迁移 DB; move key db

    redis 移动 DB MOVE key db将当前数据库的 key 移动到给定的数据库 db 当中.如果当前数据库(源数据库)和给定数据库(目标数据库)有相同名字的给定 key ,或者 key 不存 ...

  5. loj2058 「TJOI / HEOI2016」求和 NTT

    loj2058 「TJOI / HEOI2016」求和 NTT 链接 loj 思路 \[S(i,j)=\frac{1}{j!}\sum\limits_{k=0}^{j}(-1)^{k}C_{j}^{k ...

  6. Java GUI 的基础学习

    Java Swing的学习: 重点理解容器类(Container)和组件类(Component): Java把component类的子类或间接子类创建的对象称为一个组件 Java把Container的 ...

  7. JavaScript map reduce

    23333333333333 map var s = []; for(let i=0;i<10;i++){ s.push(i); } function pow(x){ return x*x; } ...

  8. Tecplot——为动画添加求解时间(翻译)

    翻译自:<Tecplot 360 Getting Started Manual>中的Scenic Detour: Add Solution Time Caption 首先展示效果: 在画图 ...

  9. 深入kubernetes调度之NodeSelector

    Kubernetes的调度有简单,有复杂,指定NodeName和使用NodeSelector调度是最简单的,可以将Pod调度到期望的节点上. 1 NodeNamePod.spec.nodeName用于 ...

  10. C++ 中的 inline 用法

    1.引入 inline 关键字的原因 在 c/c++ 中,为了解决一些频繁调用的小函数大量消耗栈空间(栈内存)的问题,特别的引入了 inline 修饰符,表示为内联函数. 栈空间就是指放置程序的局部数 ...