[算法模板]Kruskal重构树
[算法模板]Kruskal重构树
kruskal重构树是一个很常用的图论算法。主要用于解决u->v所有路径上最长边的最小值,就是找到\(u->v\)的一条路径,使路径上的最长边最小。
图片来自Kruskal重构树学习笔记+BZOJ3732 Network

从上图我们可以看出,kruskal重构树有以下特质:
- 每个原图上的节点一一对应重构树上的叶子节点。
- 重构树上每一个其他节点(正方形)代表原图上的一个边,有点权。
- 重构树是一棵二叉树。
- 重构树是一个二叉堆。(所以两个叶子节点的LCA即为路径上的最大边)
那如何建树呢?显然,在kruskal基础上搞一搞就行了:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
using namespace std;
#define maxn 25000
struct gg{
int u,v,w;
}side1[maxn*2];
vector<int> side2[maxn*4];
bool cop(gg x,gg y){return x.w<y.w;}
int ncnt,num[maxn*4],n,m,k,head[maxn],cnt,dep[maxn*4],f[maxn*4][21],fa[maxn*4];
int get(int x){
if(fa[x]==x)return x;
fa[x]=get(fa[x]);
return fa[x];
}
void uni(int x,int y,int w){
int gx=get(x),gy=get(y);
if(gx==gy)return;
ncnt++;num[ncnt]=w;
side2[ncnt].push_back(gx);side2[ncnt].push_back(gy);side2[gx].push_back(ncnt);side2[gy].push_back(ncnt);
fa[gx]=fa[gy]=fa[ncnt]=ncnt;
return;
}
void dfs(int u,int g){
dep[u]=dep[g]+1;f[u][0]=g;
for(int i=1;i<=20;i++)f[u][i]=f[f[u][i-1]][i-1];
for(int i=0;i<(int)side2[u].size();i++){
int v=side2[u][i];if(v==g)continue;
dfs(v,u);
}
return;
}
int lca(int u,int v){
if(dep[u]<dep[v])swap(u,v);
for(int i=20;i>=0;i--)if(dep[f[u][i]]>=dep[v])u=f[u][i];
if(u==v)return u;
for(int i=20;i>=0;i--)if(f[u][i]!=f[v][i]){u=f[u][i];v=f[v][i];}
return f[u][0];
}
int main(){
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=m;i++){
int u,v,w;scanf("%d%d%d",&u,&v,&w);
side1[i]=(gg){u,v,w};
}
for(int i=0;i<=n;i++){fa[i]=i;}
ncnt=n;
sort(side1+1,side1+1+m,cop);
for(int i=1;i<=m;i++){
if(get(side1[i].u)==get(side1[i].v))continue;
uni(get(side1[i].u),get(side1[i].v),side1[i].w);
}
dfs(ncnt,0);
for(int i=1;i<=k;i++){
int a,b;scanf("%d%d",&a,&b);
printf("%d\n",num[lca(a,b)]);
}
return 0;
}
[算法模板]Kruskal重构树的更多相关文章
- 算法学习——kruskal重构树
kruskal重构树是一个比较冷门的数据结构. 其实可以看做一种最小生成树的表现形式. 在普通的kruskal中,如果一条边连接了在2个不同集合中的点的话,我们将合并这2个点所在集合. 而在krusk ...
- [洛谷P4768] [NOI2018]归程 (kruskal重构树模板讲解)
洛谷题目链接:[NOI2018]归程 因为题面复制过来有点炸格式,所以要看题目就点一下链接吧\(qwq\) 题意: 在一张无向图上,每一条边都有一个长度和海拔高度,小\(Y\)的家在\(1\)节点,并 ...
- BZOJ 3732 Network 【模板】kruskal重构树
[题解] 首先,我们可以发现,A到B的所有路径中,最长边的最小值一定在最小生成树上.我们用Kruskal最小生成树时,假设有两个点集U,V,若加入一条边w(u,v)使U,V联通,那么w就是U中每个点到 ...
- kruskal重构树学习笔记
\(kruskal\) 重构树学习笔记 前言 \(8102IONCC\) 中考到了,本蒟蒻不会,所以学一下. 前置知识 \(kruskal\) 求最小(大)生成树,树上求 \(lca\). 算法详 ...
- Kruskal重构树入门
这个知识点好像咕咕咕了好长了..趁还没退役赶紧补一下吧.. 讲的非常简略,十分抱歉.. 前置知识 Kruskal算法 一定的数据结构基础(如主席树) Kruskal重构树 直接bb好像不是很好讲,那就 ...
- Kruskal重构树学习笔记+BZOJ3732 Network
今天学了Kruskal重构树,似乎很有意思的样子~ 先看题面: BZOJ 题目大意:$n$ 个点 $m$ 条无向边的图,$k$ 个询问,每次询问从 $u$ 到 $v$ 的所有路径中,最长的边的最小值. ...
- 【BZOJ】3732: Network【Kruskal重构树】
3732: Network Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2812 Solved: 1363[Submit][Status][Dis ...
- 2018.07.18 [NOI2018]归程(return)(kruskal重构树)
传送门 新鲜出炉的noi2018试题. 下面讲讲这题的解法: 首先要学习一个叫做kruskal重构树的东东. 听名字就知道跟kruskal算法有关,没错,原来的kruskal算法就是用并查集实现的,但 ...
- [NOI2018]归程 kruskal重构树
[NOI2018]归程 LG传送门 kruskal重构树模板题. 另一篇文章里有关于kruskal重构树更详细的介绍和更板子的题目. 题意懒得说了,这题的关键在于快速找出从查询的点出发能到达的点(即经 ...
随机推荐
- 利用开源项目 FFMpegSharp 实现音视频提取、转码、抓图等操作
开源项目地址:https://github.com/vladjerca/FFMpegSharp 首先需要在 web.config 或 app.config 中配置 <appSettings> ...
- (转)MySQL中char(36)被认为是GUID导致的BUG及解决方案
有时候在使用Toad或在程序中,偶尔会遇到如下的错误: System.FormatExceptionGUID 应包含带 4 个短划线的 32 位数(xxxxxxxx-xxxx-xxxx-xxxx-xx ...
- 黑科技!仅需 3 行代码,就能将 Gitter 集成到个人网站中,实现一个 IM 即时通讯聊天室功能?
欢迎关注个人微信公众号: 小哈学Java, 文末分享阿里 P8 高级架构师吐血总结的 <Java 核心知识整理&面试.pdf>资源链接!! 个人网站: https://www.ex ...
- vs 发版时,在发版的文件夹中,找不到应该有的某个文件
检查:VS中,这个文件右击属性,查看生成操作.如果是“无”,改为“内容”.再重新发布就没问题了. 想看发版出来的内容包括哪些,可以从“发布”--“应用程序文件”查看
- .net架构的浅谈
,net的架构有以下几种 1.两层架构:UI + 数据层 2.三层架构:UI + 业务层 + 数据层 3.三层 + 接口层 (把相关的业务层抽象成接口,下层来实现接口,中层是依赖) 4.三层 + 接口 ...
- ASP.NET Core 3.0 WebApi 系列【2】.Net Core 3.0+ CodeFirst + MySql 实现数据的迁移
写在前面 在前一小节中,我们创建了基于RESFULL风格的服务.这个小节,尝试使用CodeFirst+MySql 的方式实现数据迁移. 一.开发环境 [1]运行环境:win10 家庭版 [2]开发工具 ...
- Kubernetes中的Volume介绍
Kubernetes中支持的所有磁盘挂载卷简介发表于 2018年1月26日 Weihai Feb 10,2016 7400 字 | 阅读需要 15 分钟 容器磁盘上的文件的生命周期是短暂的,这就使得在 ...
- Loadrunner 11.00 初始化失败; 通信错误。 Error (-81024): LR_VUG: The 'WS_SOAP' type is not supported on 'WIN32' platforms .
搜索LR安装目录bin文件夹下有个“wlrun.exe”的文件,邮件点击“属性”->"兼容性"->兼容模式中选择“windows 7”,确认后重新打开即可,win10下 ...
- boto3用法
aws是Amazon Web Service的简写,它包括众多服务,其中最有名的两个是EC2和S3. S3是Simple Storage Service的简写,它是一种对象存储的实现. 安装和配置 安 ...
- NioCopy文件
步骤: 1.创建输入输出流 fis fos 2.创建通道 fis.getchannel() fos.getchannel(); 3.创建缓存区 ByteBuffer buffer = ...