CodeForces-1159B-Expansion coefficient of the array
Let's call an array of non-negative integers a1,a2,…,an a k-extension for some non-negative integer k if for all possible pairs of indices 1≤i,j≤n the inequality k⋅|i−j|≤min(ai,aj) is satisfied. The expansion coefficient of the array a is the maximal integer k such that the array a is a k-extension. Any array is a 0-expansion, so the expansion coefficient always exists.
You are given an array of non-negative integers a1,a2,…,an. Find its expansion coefficient.
The first line contains one positive integer n — the number of elements in the array a (2≤n≤300000). The next line contains n non-negative integers a1,a2,…,an, separated by spaces (0≤ai≤10^9).
Print one non-negative integer — expansion coefficient of the array a1,a2,…,an.
| input |
|
4 6 4 5 5 |
| output |
| 1 |
| input |
|
3 0 1 2 |
| output |
| 0 |
| input |
|
4 821 500 479 717 |
| output |
| 239 |
In the first test, the expansion coefficient of the array [6,4,5,5] is equal to 1 because |i−j|≤min(ai,aj), because all elements of the array satisfy ai≥3. On the other hand, this array isn't a 2-extension, because 6=2⋅|1−4|≤min(a1,a4)=5 is false.
In the second test, the expansion coefficient of the array [0,1,2] is equal to 0 because this array is not a 1-extension, but it is 0-extension.
题解
对于数列 a1,a2,…,an,分析其中任意一项ai,考虑所有的aj >= ai(aj < ai的算在aj里面考虑了),则使得min(ai,aj) = ai,要使所有的j都满足k*|i-j| <= min(ai,aj) = ai,则对于ai来说,j应该尽量远离i,这样解出来的最大的k才是有用的(即对ai的k值的约束最紧)。显然最远的j应该是数列两端中的一端,但两端不一定大于ai。那怎么办呢?仔细一想,对于两端的情况,考虑最前端a1及最后端an:
- 如果a1 >= ai,则对于当前ai来说,k要满足k <= ai/|i-1|(如果i == 1,则说明k值没有限制)。如果a1 < ai,则对于当前ai来说,k要满足k <= a1/|i-1| < ai/|i-1|。
- 如果an >= ai,则对于当前ai来说,k要满足k <= ai/|i-n|(如果i == n,则说明k值没有限制)。如果an < ai,则对于当前ai来说,k要满足k <= an/|i-n| < ai/|i-n|。
- 在所有大于等于ai的aj中,k对于ai来说要满足k <= ai/|i-j|,而|i-j| <= |i-1|或|i-j| <= |i-n|,故ai/|i-1| <= ai/|i-j|或ai/|i-n| <= ai/|i-j|。
可见,对每项ai来说,考虑两端的项所解出来的k值必定有一项是有用的(即对ai的k值的约束最紧)。
枚举每一项求解出来的有用的k值,再取最小即得到最优答案。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string.h>
#include <algorithm>
#define re register
#define il inline
#define ll long long
#define ld long double
const ll MAXN = 1e6+;
const ll INF = 1e9; //快读
il ll read()
{
char ch = getchar();
ll res = , f = ;
while(ch < '' || ch > '')
{
if(ch == '-') f = -;
ch = getchar();
}
while(ch >= '' && ch <= '')
{
res = (res<<) + (res<<) + (ch-'');
ch = getchar();
}
return res*f;
} ll a[MAXN]; int main()
{
ll n = read();
for(re ll i = ; i <= n; ++i)
{
a[i] = read();
}
ll k = INF;
for(re ll i = ; i <= n; ++i)
{
k = std::min(i==?k:std::min(a[i],a[])/(i-),k);
k = std::min(i==n?k:std::min(a[i],a[n])/(n-i),k);
}
printf("%lld\n", k);
return ;
}
CodeForces-1159B-Expansion coefficient of the array的更多相关文章
- Codeforces 221d D. Little Elephant and Array
二次联通门 : Codeforces 221d D. Little Elephant and Array /* Codeforces 221d D. Little Elephant and Array ...
- Codeforces Round #181 (Div. 2) A. Array 构造
A. Array 题目连接: http://www.codeforces.com/contest/300/problem/A Description Vitaly has an array of n ...
- Codeforces Round #284 (Div. 1) C. Array and Operations 二分图最大匹配
题目链接: http://codeforces.com/problemset/problem/498/C C. Array and Operations time limit per test1 se ...
- Codeforces Round #535 (Div. 3) E2. Array and Segments (Hard version) 【区间更新 线段树】
传送门:http://codeforces.com/contest/1108/problem/E2 E2. Array and Segments (Hard version) time limit p ...
- codeforces 558B. Amr and The Large Array 解题报告
题目链接:http://codeforces.com/problemset/problem/558/B 题目意思:给出一个序列,然后找出出现次数最多,但区间占用长度最短的区间左右值. 由于是边读入边比 ...
- CodeForces Round #179 (295A) - Greg and Array
题目链接:http://codeforces.com/problemset/problem/295/A 我的做法,两次线段树 #include <cstdio> #include < ...
- Codeforces 1105C: Ayoub and Lost Array(递推)
time limit per test: 1 second memory limit per test: 256 megabytes input: standard input output: sta ...
- Codeforces 1114F Please, another Queries on Array? [线段树,欧拉函数]
Codeforces 洛谷:咕咕咕 CF少有的大数据结构题. 思路 考虑一些欧拉函数的性质: \[ \varphi(p)=p-1\\ \varphi(p^k)=p^{k-1}\times (p-1)= ...
- Codeforces 1114F Please, another Queries on Array? 线段树
Please, another Queries on Array? 利用欧拉函数的计算方法, 用线段树搞一搞就好啦. #include<bits/stdc++.h> #define LL ...
随机推荐
- 类别不平衡问题之SMOTE算法(Python imblearn极简实现)
类别不平衡问题类别不平衡问题,顾名思义,即数据集中存在某一类样本,其数量远多于或远少于其他类样本,从而导致一些机器学习模型失效的问题.例如逻辑回归即不适合处理类别不平衡问题,例如逻辑回归在欺诈检测问题 ...
- ORACLE AUDIT
Oracle 作者:Davis_itpub 时间:2018-06-27 16:28:39 61 0 审计(Audit)用于监视用户所执行的数据库操作,并且Oracle 会将审计跟踪结果存放到OS ...
- 微信JS-SDK分享功能的.Net实现代码
JS-SDK接口是什么? 为了方便开发者实现微信内的网页(基于微信浏览器访问的网页)功能,比如拍照.选图.语音.位置等手机系统的能力,并方便开发者直接使用微信分享.扫一扫等微信特有的能力,微信推出了J ...
- python gtk 环境
为Python添加GTK+库:pygtk(windows下安装pygtk) 一.下载需要的文件 昨天晚上就是所需的文件没有找全,我还以为只需要一个pygtk就够了. 1.下载pygtk需要的文件 到p ...
- 面邻域Polygon Neighbors
面邻域Polygon Neighbors 商务合作,科技咨询,版权转让:向日葵,135-4855__4328,xiexiaokui#qq.com 功能: Polygon Neighbors Creat ...
- Tosca 添加插件或者是扩展功能,把页面上某块内容识别成table
#遇到了问题 "ICS table was not found" 是因为编辑case的时候用到了插件的功能, 但是setting里面却没有配置这个插件 #在哪里添加插件 #目的 这 ...
- MySQL 行转列 -》动态行转列 -》动态行转列带计算
Pivot Table Using MySQL - A Complete Guide | WebDevZoomhttp://webdevzoom.com/pivot-table-using-mysql ...
- mongodb批量update更新数据
需要先查找出相关的记录,然后循环处理更新数据.如下案例,更新所有status=1的数据的gender值为2 db.getCollection('test').find({"status&qu ...
- windows nginx 快捷启动关闭批处理脚本
:: 关闭回显,即执行本脚本时不显示执行路径和命令,直接显示结果 @echo off rem @author luwuer color f8 set NGINX_DIR=D:\nginx-1.12.2 ...
- 时序数据库技术体系 – 初识InfluxDB(原理)
原贴地址:http://hbasefly.com/2017/12/08/influxdb-1/?qytefg=c4ft23 在上篇文章<时序数据库体系技术 – 时序数据存储模型设计>中笔者 ...