time limit per test:1 second
memory limit per test:256 megabytes
input:standard input
output:standard output

Let's call an array of non-negative integers a1,a2,…,an a k-extension for some non-negative integer if for all possible pairs of indices 1≤i,j≤n the inequality k⋅|i−j|≤min(ai,aj) is satisfied. The expansion coefficient of the array is the maximal integer k such that the array is a k-extension. Any array is a 0-expansion, so the expansion coefficient always exists.

You are given an array of non-negative integers a1,a2,…,an. Find its expansion coefficient.

Input

The first line contains one positive integer — the number of elements in the array a (2≤n≤300000). The next line contains non-negative integers a1,a2,…,an, separated by spaces (0≤ai≤10^9).

Output

Print one non-negative integer — expansion coefficient of the array a1,a2,…,an.

Examples
input

4

6 4 5 5

output
1
 
input

3

0 1 2

output
0
 
input

4

821 500 479 717

output
239
 
Note

In the first test, the expansion coefficient of the array [6,4,5,5] is equal to because |i−j|≤min(ai,aj), because all elements of the array satisfy ai≥3. On the other hand, this array isn't a 2-extension, because 6=2⋅|1−4|≤min(a1,a4)=5 is false.

In the second test, the expansion coefficient of the array [0,1,2] is equal to because this array is not a 1-extension, but it is 0-extension.

题解

对于数列 a1,a2,…,an,分析其中任意一项ai,考虑所有的aj >= aiaj < ai的算在aj里面考虑了),则使得min(ai,aj) = ai,要使所有的j都满足k*|i-j| <= min(ai,aj) = ai,则对于ai来说,j应该尽量远离i,这样解出来的最大的k才是有用的(即对aik值的约束最紧)。显然最远的j应该是数列两端中的一端,但两端不一定大于ai。那怎么办呢?仔细一想,对于两端的情况,考虑最前端a1及最后端an

  1. 如果a1 >= ai,则对于当前ai来说,k要满足k <= ai/|i-1|(如果i == 1,则说明k值没有限制)。如果a1 < ai,则对于当前ai来说,k要满足k <= a1/|i-1| < ai/|i-1|
  2. 如果an >= ai,则对于当前ai来说,k要满足k <= ai/|i-n|(如果i == n,则说明k值没有限制)。如果an < ai,则对于当前ai来说,k要满足k <= an/|i-n| < ai/|i-n|
  3. 在所有大于等于aiaj中,k对于ai来说要满足k <= ai/|i-j|,而|i-j| <= |i-1||i-j| <= |i-n|,故ai/|i-1| <= ai/|i-j|ai/|i-n| <= ai/|i-j|

可见,对每项ai来说,考虑两端的项所解出来的k值必定有一项是有用的(即对aik值的约束最紧)。

枚举每一项求解出来的有用的k值,再取最小即得到最优答案。

 #include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string.h>
#include <algorithm>
#define re register
#define il inline
#define ll long long
#define ld long double
const ll MAXN = 1e6+;
const ll INF = 1e9; //快读
il ll read()
{
char ch = getchar();
ll res = , f = ;
while(ch < '' || ch > '')
{
if(ch == '-') f = -;
ch = getchar();
}
while(ch >= '' && ch <= '')
{
res = (res<<) + (res<<) + (ch-'');
ch = getchar();
}
return res*f;
} ll a[MAXN]; int main()
{
ll n = read();
for(re ll i = ; i <= n; ++i)
{
a[i] = read();
}
ll k = INF;
for(re ll i = ; i <= n; ++i)
{
k = std::min(i==?k:std::min(a[i],a[])/(i-),k);
k = std::min(i==n?k:std::min(a[i],a[n])/(n-i),k);
}
printf("%lld\n", k);
return ;
}

CodeForces-1159B-Expansion coefficient of the array的更多相关文章

  1. Codeforces 221d D. Little Elephant and Array

    二次联通门 : Codeforces 221d D. Little Elephant and Array /* Codeforces 221d D. Little Elephant and Array ...

  2. Codeforces Round #181 (Div. 2) A. Array 构造

    A. Array 题目连接: http://www.codeforces.com/contest/300/problem/A Description Vitaly has an array of n ...

  3. Codeforces Round #284 (Div. 1) C. Array and Operations 二分图最大匹配

    题目链接: http://codeforces.com/problemset/problem/498/C C. Array and Operations time limit per test1 se ...

  4. Codeforces Round #535 (Div. 3) E2. Array and Segments (Hard version) 【区间更新 线段树】

    传送门:http://codeforces.com/contest/1108/problem/E2 E2. Array and Segments (Hard version) time limit p ...

  5. codeforces 558B. Amr and The Large Array 解题报告

    题目链接:http://codeforces.com/problemset/problem/558/B 题目意思:给出一个序列,然后找出出现次数最多,但区间占用长度最短的区间左右值. 由于是边读入边比 ...

  6. CodeForces Round #179 (295A) - Greg and Array

    题目链接:http://codeforces.com/problemset/problem/295/A 我的做法,两次线段树 #include <cstdio> #include < ...

  7. Codeforces 1105C: Ayoub and Lost Array(递推)

    time limit per test: 1 second memory limit per test: 256 megabytes input: standard input output: sta ...

  8. Codeforces 1114F Please, another Queries on Array? [线段树,欧拉函数]

    Codeforces 洛谷:咕咕咕 CF少有的大数据结构题. 思路 考虑一些欧拉函数的性质: \[ \varphi(p)=p-1\\ \varphi(p^k)=p^{k-1}\times (p-1)= ...

  9. Codeforces 1114F Please, another Queries on Array? 线段树

    Please, another Queries on Array? 利用欧拉函数的计算方法, 用线段树搞一搞就好啦. #include<bits/stdc++.h> #define LL ...

随机推荐

  1. 类别不平衡问题之SMOTE算法(Python imblearn极简实现)

    类别不平衡问题类别不平衡问题,顾名思义,即数据集中存在某一类样本,其数量远多于或远少于其他类样本,从而导致一些机器学习模型失效的问题.例如逻辑回归即不适合处理类别不平衡问题,例如逻辑回归在欺诈检测问题 ...

  2. ORACLE AUDIT

    Oracle 作者:Davis_itpub 时间:2018-06-27 16:28:39  61  0 审计(Audit)用于监视用户所执行的数据库操作,并且Oracle 会将审计跟踪结果存放到OS ...

  3. 微信JS-SDK分享功能的.Net实现代码

    JS-SDK接口是什么? 为了方便开发者实现微信内的网页(基于微信浏览器访问的网页)功能,比如拍照.选图.语音.位置等手机系统的能力,并方便开发者直接使用微信分享.扫一扫等微信特有的能力,微信推出了J ...

  4. python gtk 环境

    为Python添加GTK+库:pygtk(windows下安装pygtk) 一.下载需要的文件 昨天晚上就是所需的文件没有找全,我还以为只需要一个pygtk就够了. 1.下载pygtk需要的文件 到p ...

  5. 面邻域Polygon Neighbors

    面邻域Polygon Neighbors 商务合作,科技咨询,版权转让:向日葵,135-4855__4328,xiexiaokui#qq.com 功能: Polygon Neighbors Creat ...

  6. Tosca 添加插件或者是扩展功能,把页面上某块内容识别成table

    #遇到了问题 "ICS table was not found" 是因为编辑case的时候用到了插件的功能, 但是setting里面却没有配置这个插件 #在哪里添加插件 #目的 这 ...

  7. MySQL 行转列 -》动态行转列 -》动态行转列带计算

    Pivot Table Using MySQL - A Complete Guide | WebDevZoomhttp://webdevzoom.com/pivot-table-using-mysql ...

  8. mongodb批量update更新数据

    需要先查找出相关的记录,然后循环处理更新数据.如下案例,更新所有status=1的数据的gender值为2 db.getCollection('test').find({"status&qu ...

  9. windows nginx 快捷启动关闭批处理脚本

    :: 关闭回显,即执行本脚本时不显示执行路径和命令,直接显示结果 @echo off rem @author luwuer color f8 set NGINX_DIR=D:\nginx-1.12.2 ...

  10. 时序数据库技术体系 – 初识InfluxDB(原理)

    原贴地址:http://hbasefly.com/2017/12/08/influxdb-1/?qytefg=c4ft23 在上篇文章<时序数据库体系技术 – 时序数据存储模型设计>中笔者 ...