【多线程与并发】:Java中的锁
锁的概念
锁是用来控制多个线程访问共享资源的方式,一般来说,一个锁可以防止多个线程同时访问共享资源(但有些锁可以允许多个线程并发的访问共享资源,如读写锁)。
在JDK1.5之前,Java是通过synchronized关键字实现锁功能的:隐式地获取锁和释放锁,但不够灵活。
在JDK1.5,java.util.concurrent包中新增了Lock接口以及相关实现类,用来实现锁功能。它提供了与synchronized关键字类似的同步功能,但功能更强大和灵活:获取锁和释放锁的可操作性、可中断地获取锁、超时获取锁等,见下表:
| 特性 | 描述 |
|---|---|
| 尝试非阻塞地获取锁 | 当前线程尝试获取锁,如果这个时刻锁没有被其他线程获取到,则成功获取并持有锁 |
| 能被中断地获取锁 | 获取到锁的线程能够响应中断(而synchronized则不会响应中断操作) |
| 超时获取锁 | 在指定的截止时间之前获取锁,如果在截止时间到了仍无法获取锁,则返回。 |
Lock接口具体的方法及释义:
public interface Lock {
/**
* 获取锁
*
* 如果当前线程无法获取到锁(可能其他线程正在持有锁),则当前线程就会休眠,直到获取到锁
*/
void lock();
/**
* 可中断地获取锁
*
* 如果如果当前线程无法获取到锁(可能其他线程正在持有锁),则当前线程就会休眠,
* 直到发生下面两种情况的任意一种:
* ①获取到了锁
* ②被其他线程中断
*/
void lockInterruptibly() throws InterruptedException;
/**
* 尝试非阻塞地获取锁
*
* lock()和lockInterruptibly()在获取不到锁的时候,都会阻塞当前线程,直到获取到锁
* 而该方法则不会阻塞线程,能立即获取到锁则返回true,获取不到则立即返回false
*
* 该方法的常用方式如下:
*
* Lock lock = ...;
* if (lock.tryLock()) {
* try {
* // manipulate protected state
* } finally {
* lock.unlock();
* }
* } else {
* // perform alternative actions
* }}
*
* 这种使用方式,可以保证只在获取到锁的时候才去释放锁
*/
boolean tryLock();
/**
* 超时获取锁
*
* 当前线程在以下三种情况下会返回:
* ①当前线程在超时时间内获取到了锁,返回true
* ②当前线程在超时时间内被中断,返回false(即该方法可以响应其他线程对该线程的中断操作)
* ③超时时间结束,没有获取到锁,返回false
*/
boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
/**
* 释放锁
*/
void unlock();
/**
* 获取与该锁绑定的Condition
*
* 当前线程只有在获得了锁,才能调用Condition的wait()方法(表示我已经到了某一条件),
* 调用Condition的wait()方法之后,当前线程会释放锁
*/
Condition newCondition();
}
包java.util.concurrent.locks的类图

其中:
AbstractOwnableSynchronizer、AbstractQueuedLongSynchronizer、AbstractQueuedSynchronizer是同步器,是锁实现相关的内容。
ReentrantLock(重入锁)和ReentrantReadWriteLock(重入读写锁)是具体的实现类。
LockSupport是一个工具类,提供了基本的线程阻塞和唤醒功能。
Condition是实现线程间实现多条件等待/通知模式用到的。
同步器的实现原理
TODO
重入锁:ReentrantLock
重入锁,顾名思义,就是支持重新进入的锁:即某线程在获取到锁之后,可以再次获取锁而不会被阻塞。
ReentrantLock类是通过组合自定义同步器来来实现这种重入特性的,除此之外,该类还支持公平地获取锁(获取锁的顺序与请求锁的顺序是相同的,等待时间最长的线程最优先获取到锁),还支持绑定多个Condition。(synchronized关键字隐式地支持重进入,比如synchronized修饰的递归方法,在方法执行时,执行线程在获取了锁之后仍能连续多次地获得该锁,不会出现阻塞自己的情况)。
ReentrantLock内部重进入的实现(非公平获取锁的情况)代码如下:
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}else if (current == getExclusiveOwnerThread()) {
//如果是当前持有锁的线程再次获取锁,则将同步值进行增加并返回true
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
ReentrantLock公平锁的内部实现代码如下:
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
与非公平获取锁的方法nonfairTryAcquire(int acquires)相比,多了一个hasQueuedPredecessors()判断:同步队列中当前节点(当前想要获取锁的线程)是否有前驱节点,如果该方法返回true,则表示有线程比当前线程更早地请求获取锁,因此需要前驱线程获取并释放锁之后才能继续获取锁。
公平锁保证了锁的获取按照FIFO原则,而代价是进行大量的线程切换;
非公平锁虽然可能造成线程“饥饿”(即某线程可能需要等很久才得到锁),但线程切换极少,可以保证更大的吞吐量。
读写锁:ReentrantReadWriteLock
ReentrantLock在在同一时刻,只允许一个线程进行访问(无论读还是写)。而读写锁是指:在同一时刻,允许多个线程进行读操作,而写操作则会阻塞其他所有的线程(无论是读还是写,都会被阻塞)。读写锁维护了一对锁:读锁和写锁,通过分离读锁和写锁,使得并发性能相比一般的排他锁有了很大的提升。
Java中读写锁的实现类是ReentrantReadWriteLock,它支持:①重进入;②公平性选择;③锁降级:写锁可以降级为读锁,其提供了一些便于外界监控其内部状态的方法,如下:
int getReadLockCount()
返回当前读锁被获取的次数
注意:该次数并不等于获取读锁的线程数,
因为同一线程可以连续获得多次读锁,获取一次,返回值就加1,
比如,仅一个线程,它连续获得了n次读锁,那么占据读锁的线程数是1,但该方法返回n
int getReadHoldCount()
返回当前前程获取读锁的次数
boolean isWriteLock()
判断读锁是否被获取
int getWriteHoldCount()
返回当前写锁被获取的次数
使用举例:
public class Cache{
//非线程安全的HashMap
private static Map<String, Object> map = new HashMap<>();
//读写锁
private static ReentrantReadWriteLock reentrantReadWriteLock = new ReentrantReadWriteLock();
//读锁
private static Lock readLock = reentrantReadWriteLock.readLock();
//写锁
private static Lock writeLock = reentrantReadWriteLock.writeLock();
/**
* 获取key对应的value
*
* 使用读锁,使得并发访问该方法时不会被阻塞
*/
public static final Object get(String key){
readLock.lock();
try{
return map.get(key);
}finally {
readLock.unlock();
}
}
/**
* 设置key对应的value
*
* 当有线程对map进行put操作时,使用写锁,阻塞其他线程的读、写操作,
* 只有在写锁被释放后,其他读写操作才能继续
*/
public static Object put(String key, Object value){
writeLock.lock();
try {
return map.put(key, value);
}finally {
writeLock.unlock();
}
}
/**
* 清空map
*
* 当有线程对map进行清空操作时,使用写锁,阻塞其他线程的读、写操作,
* 只有在写锁被释放后,其他读写操作才能继续
*/
public static void clear(){
writeLock.lock();
try {
map.clear();
}finally {
writeLock.unlock();
}
}
}
TODO:读写锁的实现原理
LockSupport工具类
LockSupport定义了一组公共静态方法,这些方法提供了最基本的线程阻塞和唤醒功能,是构建同步组件的基础工具,它主要有两类方法:
①以park开头的方法:阻塞当前线程
②以unpark开头的方法:唤醒被阻塞的线程
void park()
阻塞当前线程,只有当前线程被中断或其他线程调用unpark(Thread thread),才能从park()方法返回
void parkNanos(long nanos)
阻塞当前线程,最长不超过nanos纳秒,返回条件在park()的基础上增加了超时返回
void parkUntil(long deadline)
阻塞当前线程,直到deadline这个时间点(从1970年开始到deadline时间的毫秒数)
void unpark(Thread thread)
唤醒处于阻塞状态的thread线程
在JDK1.6中,该类增加了void park(Object blocker)、void parkNanos(Object blocker, long nanos)、void parkUntil(Object blocker, long deadline)方法,相比之前的park方法,多了一个blocker对象,该对象用来标识当前线程在等待的对象(阻塞对象),主要用来问题排查和系统监控(对线程dump时,可以提供阻塞对象的信息),可以用来代替原有的park方法。
Condition接口
任意一个Java对象都有一组监视器方法(定义在java.lang.Object上):wait()、wait(long timeout)、notify()、notifyAll(),这些方法与sychronized配合使用,可以实现等待/通知模式。
Condition接口也提供了类似的监视器方法,与Lock配合使用,可以实现等待/通知模式。
两者的区别如下:
| 对比项 | Object Monitor Methods | Condition |
|---|---|---|
| 前置条件 | 获取对象的锁 | 调用Lock.lock()获取锁→调用Lock.newCondition()获取Condition对象 |
| 调用方式 | 直接调用,如object.wait() | 直接调用,如condition.await() |
| 等待队列个数 | 1个 | 多个 |
| 当前线程释放锁并进入等待状态 | 支持 | 支持 |
| 当前线程释放锁并进入等待状态,在等待状态中不响应中断 | 不支持 | 支持 |
| 当前线程释放锁并进入超时等待状态 | 支持 | 支持 |
| 当前线程释放锁并进入等待状态到将来的某个时间点 | 不支持 | 支持 |
| 唤醒等待队列中的一个线程 | 支持 | 支持 |
| 唤醒等待队列中的全部线程 | 支持 | 支持 |
Condition中的方法如下:(一般会将Condition对象作为成员变量)
说明:当前线程调用await()方法后,当前线程会释放锁并在此等候,当其他线程调用signal()方法通知当前线程后,当前线程才从await()方法中返回,并且在返回前已经获取了锁(re-acquire)。
public interface Condition {
/**
* 当前线程进入等待状态直到被通知(signalled)或中断(interrupted)
*
* 如果当前线程从该方法返回,则表明当前线程已经获取了Condition对象所对应的锁
*
* @throws InterruptedException
*/
void await() throws InterruptedException;
/**
* 与await()不同是:该方法对中断操作不敏感
*
* 如果当前线程在等待的过程中被中断,当前线程仍会继续等待,直到被通知(signalled),
* 但当前线程会保留线程的中断状态值
*
*/
void awaitUninterruptibly();
/**
* 当前线程进入等待状态,直到被通知或被中断或超时
*
* 返回值表示剩余时间,
* 如果当前线程在nanosTimeout纳秒之前被唤醒,那么返回值就是(nanosTimeout-实际耗时),
* 如果返回值是0或者负数,则表示等待已超时
*
*/
long awaitNanos(long nanosTimeout) throws InterruptedException;
/**
* 该方法等价于awaitNanos(unit.toNanos(time)) > 0
*/
boolean await(long time, TimeUnit unit) throws InterruptedException;
/**
* 当前线程进入等待状态,直到被通知或被中断或到达时间点deadline
*
* 如果在没有到达截止时间就被通知,返回true
* 如果在到了截止时间仍未被通知,返回false
*/
boolean awaitUntil(Date deadline) throws InterruptedException;
/**
* 唤醒一个等待在Condition上的线程
* 该线程从等待方法返回前必须获得与Condition相关联的锁
*/
void signal();
/**
* 唤醒所有等待在Condition上的线程
* 每个线程从等待方法返回前必须获取Condition相关联的锁
*/
void signalAll();
}
使用Condition实现一个有界阻塞队列的例子:当队列为空时,队列的获取操作将会阻塞当前线程,直到队列中有新增元素;当队列已满时,队列的插入操作就会阻塞插入线程,直到队列中出现空位。(其实这个例子就是简化版的ArrayBlockingQueue)
class BoundedBlockingQueue<T> {
//使用数组维护队列
private Object[] queue;
//当前数组中的元素个数
private int count = 0;
//当前添加元素到数组的位置
private int addIndex = 0;
//当前移除元素在数组中的位置
private int removeIndex = 0;
private Lock lock = new ReentrantLock();
private Condition notEmptyCondition = lock.newCondition();
private Condition notFullCondition = lock.newCondition();
private BoundedBlockingQueue() {
}
public BoundedBlockingQueue(int capacity) {
queue = new Object[capacity];
}
public void put(T t) throws InterruptedException {
lock.lock();//获得锁,保证内部数组修改的可见性和排他性
try {
//使用while,而非if:防止过早或意外的通知,
//加入当前线程释放了锁进入等待状态,然后其他线程进行了signal,
//则当前线程会从await()方法中返回,再次判断count == queue.length
//todo:哪些情况下的过早或意外???
while (count == queue.length) {
notFullCondition.await();//释放锁,等待队列不满,即等待队列出现空位
}
queue[addIndex] = t;
addIndex++;
if (addIndex == queue.length) {
addIndex = 0;
}
count++;
notEmptyCondition.signal();
} finally {
//确保会释放锁
lock.unlock();
}
}
@SuppressWarnings("unchecked")
public T take() throws InterruptedException {
lock.lock();
try {
while (count == 0) {
notEmptyCondition.await();//释放锁,等待队列不为空,即等待队列中至少有一个元素
}
Object x = queue[removeIndex];
removeIndex++;
if (removeIndex == queue.length) {
removeIndex = 0;
}
count--;
notFullCondition.signal();//通知那些等待队列非空的线程,可以向队列中插入元素了
return (T) x;
} finally {
//确保会释放锁
lock.unlock();
}
}
}
TODO:Condition的实现分析
参考
大部分来自《Java并发编程的艺术》,部分参考JDK中的注释说明。
作者:maxwellyue
链接:https://www.jianshu.com/p/6e0982253c01
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。
【多线程与并发】:Java中的锁的更多相关文章
- Java并发编程:Java中的锁和线程同步机制
锁的基础知识 锁的类型 锁从宏观上分类,只分为两种:悲观锁与乐观锁. 乐观锁 乐观锁是一种乐观思想,即认为读多写少,遇到并发写的可能性低,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新 ...
- Java并发指南4:Java中的锁 Lock和synchronized
Java中的锁机制及Lock类 锁的释放-获取建立的happens before 关系 锁是java并发编程中最重要的同步机制.锁除了让临界区互斥执行外,还可以让释放锁的线程向获取同一个锁的线程发送消 ...
- 【多线程】不懂什么是 Java 中的锁?看看这篇你就明白了!
本文来源:Java建设者 原文地址:https://mp.weixin.qq.com/s/GU42BjM5jY2CEMVD_PAZBQ Java 锁分类 Java 中的锁有很多,可以按照不同的功能.种 ...
- 聊聊并发-Java中的Copy-On-Write容器
详见: http://blog.yemou.net/article/query/info/tytfjhfascvhzxcytp78 聊聊并发-Java中的Copy-On-Write容器 Cop ...
- java 中的锁 -- 偏向锁、轻量级锁、自旋锁、重量级锁(转载)
之前做过一个测试,详情见这篇文章<多线程 +1操作的几种实现方式,及效率对比>,当时对这个测试结果很疑惑,反复执行过多次,发现结果是一样的: 1. 单线程下synchronized效率最高 ...
- Java 中的锁
Java中的锁分类 在读很多并发文章中,会提及各种各样锁如公平锁,乐观锁等等,这篇文章介绍各种锁的分类.介绍的内容如下: 公平锁/非公平锁 可重入锁 独享锁/共享锁 互斥锁/读写锁 乐观锁/悲观锁 分 ...
- java 中的锁 -- 偏向锁、轻量级锁、自旋锁、重量级锁
之前做过一个测试,详情见这篇文章<多线程 +1操作的几种实现方式,及效率对比>,当时对这个测试结果很疑惑,反复执行过多次,发现结果是一样的: 1. 单线程下synchronized效率最高 ...
- 深入理解Java中的锁
转载:https://www.jianshu.com/p/2eb5ad8da4dc Java中的锁 常见的锁有synchronized.volatile.偏向锁.轻量级锁.重量级锁 1.synchro ...
- 一篇blog带你了解java中的锁
前言 最近在复习锁这一块,对java中的锁进行整理,本文介绍各种锁,希望给大家带来帮助. Java的锁 乐观锁 乐观锁是一种乐观思想,即认为读多写少,遇到并发写的可能性低,每次去拿数据的时候都认为别人 ...
- 深入介绍Java中的锁[原理、锁优化、CAS、AQS]
1.为什么要用锁? 锁-是为了解决并发操作引起的脏读.数据不一致的问题. 2.锁实现的基本原理 2.1.volatile Java编程语言允许线程访问共享变量, 为了确保共享变量能被准确和一致地更新, ...
随机推荐
- 各种变异绕过XSS过滤器
各种变异绕过XSS过滤器(Various variations bypass the XSS filter ) 文章来自:https://www.cnblogs.com/iAmSoScArEd/p/1 ...
- Referenced file contains errors (xml文件第一行小红叉错误)
转自:http://www.manongjc.com/article/30401.html 在eclipse中开发网页时,经常会遇到写xml文件时第一行无缘无故报错.在最左面的行数上面报出一个小红叉, ...
- JDBC中PreparedStatement相比Statement的好处
Statement对象: 用于执行不带参数的简单SQL语句: 特点: a. 只执行单条的sql语句: b. 只能执行不带参数的sql语句: c.运行原理的角度,数据库接收到sql语句后需要对该条sql ...
- Lerp
Lerp,就是返回两个值之间的插值,一般有三个参数.第一个参数为初始值,第二个参数为最终值,插值为0~1d的一个浮点数值,为0时为初始值,1时为最终值,为0到1之间的数值时返回一个混合数值.若第三个参 ...
- Vue 文档Demo01
Vue 1. Vue 基础 1. 声明式渲染 1. v-bind <!DOCTYPE html> <html> <head> <meta charset=&q ...
- keekalived+nginx 高可用
高可用环境准备 后端服务器主配置文件 [192.168.2.7-root@web01~]#cat /etc/nginx/nginx.conf user www; worker_processes 1; ...
- Mysql修改binlog日志过期时间
1.临时生效 # 查看默认设置的过期时间 show variables like "%expire_logs%"; # 设置保留15天 set global expire_logs ...
- C++(三十九) — 主函数中增加调试信息
程序调试技术: (1)阅读程序,静态代码复查: (2)“cout大法” (3)使用开发工具,断点 int main() { TShape s(lu, lu); cout << __ ...
- Django解析器
1.什么是解析器? 对请求的数据进行解析-请求体进行解析.解析器在你不拿请求体数据时,不会被调用. 安装与使用:(官方文档) https://www.django-rest-framework.org ...
- ifram 调用父页面的easyui弹框
转自https://www.cnblogs.com/puke/archive/2012/09/13/2683067.html 曾经试过这样的方法 在iframe子页面获取父页面元素 ...