Semantic Segmentation on Remotely Sensed Images Using an Enhanced Global Convolutional Network with Channel Attention and Domain Specific Transfer Learning
创新点:
1、在GCN(global convolutional network)基础上,把他的backbone替换成更多层的,使其适应中分辨率影像,resnet50,101,152
2、利用 channel attention 来挑选出最具有识别力的特征
3、迁移学习来解决数据稀缺的问题,用了不同分辨率训练好的数据
目标数据集:
landsat-8 和 ISPRS Vaihingen Challenge Dataset
语义分割现代技术:
1、global context(全局上下文信息):如 PSPNet 和 Deeplab v3 的金字塔池化和看空洞金字塔池化。但为了得到较好的效果,空洞卷积下采样了8次,费时费内存【16】
2、attention module(注意力模块):帮助我们只关注想要的信息,可以关注不同尺度的信息。本文用了 channel attention。【16,17】
3、refinement residual block(精细化残差块):每一步的所有特征图都要经过这个残差块。本文用的是 boundary refinement block(BR),第一部分是一个1*1的卷积层,输出通道统一成21层,第二部分加一个基础的残差块【15,16】
【15】 Peng, C.; Zhang, X.; Yu, G.; Luo, G.; Sun, J. Large kernel matters—Improve semantic segmentation by global
convolutional network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1743–1751.
【16】 Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Learning a Discriminative Feature Network for Semantic
Segmentation. arXiv 2018, arXiv:1804.09337.
【17】 Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. arXiv 2017, arXiv:1709.01507.
数据预处理:
1、减去均值
2、随机水平翻转进行数据扩增
3、裁剪到512*512
训练参数:
初始学习率:0.004
权重衰减:0.00001
优化器:Adam
学习率衰减:poly 法,(1 - epoch / MaxEpoch)^0.9
epoch:50
batch-size:4
比较:
不同backbone,attention,transfer。迁移学习是两个数据集互相迁移,即 lc8 的训练好了算 isprs 的预训练权重,isprs 训练好的算 lc8 的预训练权重。
最后3个结合的效果最好
Semantic Segmentation on Remotely Sensed Images Using an Enhanced Global Convolutional Network with Channel Attention and Domain Specific Transfer Learning的更多相关文章
- Large Kernel Matters —— Improve Semantic Segmentation by Global Convolutional Network(GCN全局卷积网络)
作者认为语义分割的两个挑战是分类和定位,而这两个挑战又是比较对立的.对于分类问题,模型需要有变形和旋转不变形,而对于定位问题,模型有需要对变形敏感. 提出的GCN遵循两个主要原则: 1.对定位问题,模 ...
- Review of Semantic Segmentation with Deep Learning
In this post, I review the literature on semantic segmentation. Most research on semantic segmentati ...
- Learning a Discriminative Feature Network for Semantic Segmentation(语义分割DFN,区别特征网络)
1.介绍 语义分割通常有两个问题:类内不一致性(同一物体分成两类)和类间不确定性(不同物体分成同一类).本文从宏观角度,认为语义分割不是标记像素而是标记一个整体,提出了两个结构解决这两个问题,平滑网络 ...
- Fully Convolutional Networks for semantic Segmentation(深度学习经典论文翻译)
摘要 卷积网络在特征分层领域是非常强大的视觉模型.我们证明了经过端到端.像素到像素训练的卷积网络超过语义分割中最先进的技术.我们的核心观点是建立"全卷积"网络,输入任意尺寸,经过有 ...
- 论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation
Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx
- 论文笔记之:Instance-aware Semantic Segmentation via Multi-task Network Cascades
Instance-aware Semantic Segmentation via Multi-task Network Cascades Jifeng Dai Kaiming He Jian Sun ...
- 目标检测--Rich feature hierarchies for accurate object detection and semantic segmentation(CVPR 2014)
Rich feature hierarchies for accurate object detection and semantic segmentation 作者: Ross Girshick J ...
- 论文学习:Fully Convolutional Networks for Semantic Segmentation
发表于2015年这篇<Fully Convolutional Networks for Semantic Segmentation>在图像语义分割领域举足轻重. 1 CNN 与 FCN 通 ...
- 论文笔记(3):STC: A Simple to Complex Framework for Weakly-supervised Semantic Segmentation
论文题目是STC,即Simple to Complex的一个框架,使用弱标签(image label)来解决密集估计(语义分割)问题. 2014年末以来,半监督的语义分割层出不穷,究其原因还是因为pi ...
随机推荐
- 流程activiti的组和用户的使用
一.数据表增加用户和分组 1.建立用户 2.建立组 3.建立用户和组的关联关系 二.新建测试流程 1.流程整体 2.设置“部门经理”任务的属性,填写组的ID 3.设置“总经理”任务的属性,填写组的ID ...
- 关于Shareppoint客户端对象模型和Shareppoint根据内部名称获取字段值的随笔
实际上,每个SharePoint字段实际上有两个名称,一个是“标题”(Title,有时候也把它叫做“显示名称”),一个是“内部名称”(Internal Name).平时用户在列表视图界面上看到的,都是 ...
- springboot+security整合(3)自定义鉴权
说明 springboot 版本 2.0.3源码地址:点击跳转 系列 springboot+security 整合(1) springboot+security 整合(2) springboot+se ...
- angular 8 配置路由
一.生成路由文件 按照惯例,有一个独立模块来配置相关路由,这个模块类的名字叫做AppRoutingModule,位于src/app下的app-routing.module.ts文件中. 使用CLI生成 ...
- Linux (x86) Exploit 开发系列教程之三(Off-By-One 漏洞 (基于栈))
off by one(栈)? 将源字符串复制到目标缓冲区可能会导致off by one 1.源字符串长度等于目标缓冲区长度. 当源字符串长度等于目标缓冲区长度时,单个NULL字节将被复制到目标缓冲区上 ...
- Jenkins配置Publish Over SSH讲解说明
原创 Jenkins配置Publish Over SSH讲解说明 2018-08-22 11:59:30 M.Blog 阅读数 3764更多 分类专栏: Jenkins 版权声明:本文为博主原创文 ...
- oracle命令行导出、导入dmp文件
1.导出语句: exp test/test@127.0.0.1:1521/orcl file=d:\gpmgt.dmp full=n: 导出test用户数据库对象,full=n表示默认只导出test用 ...
- Android笔记(五十七)Android总结:基础篇
什么是安卓 Android是一种基于Linux的自由及开放源代码的操作系统,主要使用于移动设备,如智能手机和平板电脑,由Google公司和开放手机联盟领导及开发.目前发行版本是6.0 安卓平台的优势 ...
- H3C 802.11n
- 如果不用 ReSharper,那么 Visual Studio 2019 能还原 ReSharper 多少功能呢?
原文:https://blog.csdn.net/WPwalter/article/details/100158000 本文的内容分为三个部分: Visual Studio 能完全还原的 ReShar ...