创新点:

1、在GCN(global convolutional network)基础上,把他的backbone替换成更多层的,使其适应中分辨率影像,resnet50,101,152

2、利用 channel attention 来挑选出最具有识别力的特征

3、迁移学习来解决数据稀缺的问题,用了不同分辨率训练好的数据

目标数据集:

landsat-8 和 ISPRS Vaihingen Challenge Dataset

语义分割现代技术:

1、global context(全局上下文信息):如 PSPNet 和 Deeplab v3 的金字塔池化和看空洞金字塔池化。但为了得到较好的效果,空洞卷积下采样了8次,费时费内存【16】

2、attention module(注意力模块):帮助我们只关注想要的信息,可以关注不同尺度的信息。本文用了 channel attention。【16,17】

3、refinement residual block(精细化残差块):每一步的所有特征图都要经过这个残差块。本文用的是 boundary refinement block(BR),第一部分是一个1*1的卷积层,输出通道统一成21层,第二部分加一个基础的残差块【15,16】

【15】 Peng, C.; Zhang, X.; Yu, G.; Luo, G.; Sun, J. Large kernel matters—Improve semantic segmentation by global
convolutional network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1743–1751.
【16】 Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Learning a Discriminative Feature Network for Semantic
Segmentation. arXiv 2018, arXiv:1804.09337.
【17】 Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. arXiv 2017, arXiv:1709.01507.

数据预处理:

1、减去均值

2、随机水平翻转进行数据扩增

3、裁剪到512*512

训练参数:

初始学习率:0.004

权重衰减:0.00001

优化器:Adam

学习率衰减:poly 法,(1 - epoch / MaxEpoch)^0.9

epoch:50

batch-size:4

比较:

不同backbone,attention,transfer。迁移学习是两个数据集互相迁移,即 lc8 的训练好了算 isprs 的预训练权重,isprs 训练好的算 lc8 的预训练权重。

最后3个结合的效果最好

Semantic Segmentation on Remotely Sensed Images Using an Enhanced Global Convolutional Network with Channel Attention and Domain Specific Transfer Learning的更多相关文章

  1. Large Kernel Matters —— Improve Semantic Segmentation by Global Convolutional Network(GCN全局卷积网络)

    作者认为语义分割的两个挑战是分类和定位,而这两个挑战又是比较对立的.对于分类问题,模型需要有变形和旋转不变形,而对于定位问题,模型有需要对变形敏感. 提出的GCN遵循两个主要原则: 1.对定位问题,模 ...

  2. Review of Semantic Segmentation with Deep Learning

    In this post, I review the literature on semantic segmentation. Most research on semantic segmentati ...

  3. Learning a Discriminative Feature Network for Semantic Segmentation(语义分割DFN,区别特征网络)

    1.介绍 语义分割通常有两个问题:类内不一致性(同一物体分成两类)和类间不确定性(不同物体分成同一类).本文从宏观角度,认为语义分割不是标记像素而是标记一个整体,提出了两个结构解决这两个问题,平滑网络 ...

  4. Fully Convolutional Networks for semantic Segmentation(深度学习经典论文翻译)

    摘要 卷积网络在特征分层领域是非常强大的视觉模型.我们证明了经过端到端.像素到像素训练的卷积网络超过语义分割中最先进的技术.我们的核心观点是建立"全卷积"网络,输入任意尺寸,经过有 ...

  5. 论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

    Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx

  6. 论文笔记之:Instance-aware Semantic Segmentation via Multi-task Network Cascades

    Instance-aware Semantic Segmentation via Multi-task Network Cascades Jifeng Dai Kaiming He Jian Sun ...

  7. 目标检测--Rich feature hierarchies for accurate object detection and semantic segmentation(CVPR 2014)

    Rich feature hierarchies for accurate object detection and semantic segmentation 作者: Ross Girshick J ...

  8. 论文学习:Fully Convolutional Networks for Semantic Segmentation

    发表于2015年这篇<Fully Convolutional Networks for Semantic Segmentation>在图像语义分割领域举足轻重. 1 CNN 与 FCN 通 ...

  9. 论文笔记(3):STC: A Simple to Complex Framework for Weakly-supervised Semantic Segmentation

    论文题目是STC,即Simple to Complex的一个框架,使用弱标签(image label)来解决密集估计(语义分割)问题. 2014年末以来,半监督的语义分割层出不穷,究其原因还是因为pi ...

随机推荐

  1. ②将SVN迁移到GitLab-多分支多标签迁移

    之前我们介绍了<①将SVN迁移到GitLab-单分支迁移>,文中研究了svn迁移到git单分支的操作过程,本文针对实际开发过程中svn使用到的trunk.branches.tags情况进行 ...

  2. 关于ES6的对象扩展运算符

    对象的扩展运算符(...),用于取出参数对象中的所有可遍历属性,然后拷贝到当前对象之中 对象扩展运算符: 1. 复制对象 let obj1 = { x: 1, y: 2, z: 3 } let obj ...

  3. SAP云平台CloudFoundry环境里route 超过quota的错误处理

    试图往SAP Cloud Platform CloudFoundry用命令行CLI部署应用时,遇到如下错误: 原因是因为这个新建的名为Haytham的subaccount没有分配application ...

  4. ECharts 实现地图散点图上(转载)

    转载来源:https://efe.baidu.com/blog/echarts-map-tutorial/ ECharts 实现地图散点图(上)  小红  2016-04-28  ECharts, 教 ...

  5. Java 进阶面试问题必备

    面向对象编程的基本理念与核心设计思想 解释下多态性(polymorphism),封装性(encapsulation),内聚(cohesion)以及耦合(coupling). 继承(Inheritanc ...

  6. 【hbase】hbase-2.2.1配置独立的zookeeper的安装与测试

    下载hbase-2.2.1-bin.tar.gz并执行安装命令: [hadoop@hadoop01 ~]$ tar -zxvf hbase--bin.tar.gz 查看安装目录: [hadoop@ha ...

  7. layui 单选框、复选框、下拉菜单 不显示问题 记录

    1. 如果是 ajax嵌套了 页面, 请确保  只有最外层的页面引入了 layui.css 和 layui.js 内层页面 切记不要再次引入 2. layui.use(['form', 'upload ...

  8. ISM无需授权使用的无线频率

  9. Nginx编译安装和平滑升级

    一.Nginx的编译安装 1.安装依赖包gcc,gcc-c++,pcre,openssl-devel 命令:yum -y install gcc gcc-c++ pcre-devel openssl- ...

  10. MongoDB的关闭

    关闭 1,非后台运行时,关闭对话,或者ctrl+c 2,登录数据库执行:db.shutdownServer(); 3,带数据目录,关闭服务器,安全   mongod --shutdown --dbpa ...