[E2E_L9]GOMFCTemplate的融合进阶
在前面出现的融合方法中,最突出的问题就是每次运算,都需要将整个推断的过程全部操作一遍,这样肯定是费时间的——所以我们需要将能够独立的地方独立出来,但是这个过中非常容易出现溢出的错误——经过一段时间的尝试,终于得到了相对稳定的结果,这里将结果记录下来:
// 用于推断的函数
Mat CGOMfcTemplate2Dlg::IEInfer(Mat m_mainframe)
{
//初始化IE
// --------------------------- 1.为IE准备插件-------------------------------------
InferencePlugin plugin(PluginDispatcher().getSuitablePlugin(TargetDevice::eCPU));
plugin.AddExtension(std::make_shared<Extensions::Cpu::CpuExtensions>());//Extension,useful
// --------------------------- 2.读取IR模型(xml和bin)---------------------------------
CNNNetReader networkReader;
networkReader.ReadNetwork("./road-segmentation-adas-0001.xml");
networkReader.ReadWeights("./road-segmentation-adas-0001.bin");
CNNNetwork network = networkReader.getNetwork();
// --------------------------- 3. 准备输入输出的------------------------------------------
InputsDataMap inputInfo(network.getInputsInfo());//获得输入信息
if (inputInfo.size() != 1) throw std::logic_error("错误,该模型应该为单输入");
auto lrInputInfoItem = inputInfo["data"]; //开始读入
int w = static_cast<int>(lrInputInfoItem->getTensorDesc().getDims()[3]); //模型要求的输入大小
int h = static_cast<int>(lrInputInfoItem->getTensorDesc().getDims()[2]);
network.setBatchSize(1);//只有1副图片,故BatchSize = 1
//准备输出数据
OutputsDataMap outputInfo(network.getOutputsInfo());//获得输出信息
std::string firstOutputName;
for (auto &item : outputInfo) {
if (firstOutputName.empty()) {
firstOutputName = item.first;
}
DataPtr outputData = item.second;
if (!outputData) {
throw std::logic_error("错误的格式,请检查!");
}
item.second->setPrecision(Precision::FP32);
}
// --------------------------- 4. 读取模型 ------------------------------------------(目视第4步骤最消耗时间)
ExecutableNetwork executableNetwork = plugin.LoadNetwork(network, {});
// --------------------------- 5. 创建推断 -------------------------------------------------
infer_request = executableNetwork.CreateInferRequest();
// --------------------------- 6. 将数据塞入模型 -------------------------------------------------
Blob::Ptr lrInputBlob = infer_request.GetBlob("data"); //data这个名字是我看出来的,实际上这里可以更统一一些
matU8ToBlob<float_t>(m_mainframe, lrInputBlob, 0);//重要的转换函数,第3个参数是batchSize,应该是自己+1的
// --------------------------- 7. 推断结果 -------------------------------------------------
infer_request.Infer();//多张图片多次推断
// --------------------------- 8. 处理结果-------------------------------------------------------
const Blob::Ptr outputBlob = infer_request.GetBlob(firstOutputName);
const auto outputData = outputBlob->buffer().as<PrecisionTrait<Precision::FP32>::value_type*>();
size_t numOfImages = outputBlob->getTensorDesc().getDims()[0];
size_t numOfChannels = outputBlob->getTensorDesc().getDims()[1];
h = outputBlob->getTensorDesc().getDims()[2];
w = outputBlob->getTensorDesc().getDims()[3];
size_t nunOfPixels = w * h; //写在内存里的结果,还是要拼出来的
std::vector<cv::Mat> imgPlanes{ cv::Mat(h, w, CV_32FC1, &(outputData[0])),
cv::Mat(h, w, CV_32FC1, &(outputData[nunOfPixels])),
cv::Mat(h, w, CV_32FC1, &(outputData[nunOfPixels * 2])) };
for (auto & img : imgPlanes) //本来是平的
img.convertTo(img, CV_8UC1, 255);
cv::Mat resultImg;
cv::merge(imgPlanes, resultImg);
return resultImg;
}

ExecutableNetwork executableNetwork = plugin.LoadNetwork(network, {});
infer_request.Infer();//多张图片多次推断


CNNNetwork CGOMfcTemplate2Dlg::IENetWork(string strXML, string strBIN)
{
CNNNetReader networkReader;
networkReader.ReadNetwork(strXML);
networkReader.ReadWeights(strBIN);
CNNNetwork network = networkReader.getNetwork();
return network;
}
string CGOMfcTemplate2Dlg::IENetSetup(CNNNetwork network)
{
InputsDataMap inputInfo(network.getInputsInfo());//获得输入信息
BlobMap inputBlobs; //保持所有输入的blob数据
if (inputInfo.size() != 1) throw std::logic_error("错误,该模型应该为单输入");
auto lrInputInfoItem = inputInfo["data"]; //开始读入
int h = static_cast<int>(lrInputInfoItem->getTensorDesc().getDims()[2]);
int w = static_cast<int>(lrInputInfoItem->getTensorDesc().getDims()[3]); //模型要求的输入大小
network.setBatchSize(1);//只有1副图片,故BatchSize = 1
//准备输出数据
OutputsDataMap outputInfo(network.getOutputsInfo());//获得输出信息
std::string firstOutputName;
for (auto &item : outputInfo) {
if (firstOutputName.empty()) {
firstOutputName = item.first;
}
DataPtr outputData = item.second;
if (!outputData) {
throw std::logic_error("错误的格式,请检查!");
}
item.second->setPrecision(Precision::FP32);
}
return firstOutputName;
}
InferencePlugin CGOMfcTemplate2Dlg::IEplugin(CNNNetwork network)
{
InferencePlugin plugin(PluginDispatcher().getSuitablePlugin(TargetDevice::eCPU));
plugin.AddExtension(std::make_shared<Extensions::Cpu::CpuExtensions>());//Extension,useful
return plugin;
}
ExecutableNetwork CGOMfcTemplate2Dlg::getNetWork(InferencePlugin plugin, CNNNetwork network)
{
ExecutableNetwork executableNetwork = plugin.LoadNetwork(network, {});
return executableNetwork;
}

std::string firstOutputName = IENetSetup(network);
InferRequest infer_request = executableNetwork.CreateInferRequest();
Blob::Ptr lrInputBlob = infer_request.GetBlob("data");
matU8ToBlob<float_t>(m_mainframe, lrInputBlob, 0);//重要的转换函数,第3个参数是batchSize,应该是自己+1的
// ---------------------------推断结果 -------------------------------------------------
infer_request.Infer();//多张图片多次推断
// ---------------------------处理结果-------------------------------------------------------
const Blob::Ptr outputBlob = infer_request.GetBlob(firstOutputName);
const auto outputData = outputBlob->buffer().as<PrecisionTrait<Precision::FP32>::value_type*>();
size_t numOfImages = outputBlob->getTensorDesc().getDims()[0];
size_t numOfChannels = outputBlob->getTensorDesc().getDims()[1];
int h = outputBlob->getTensorDesc().getDims()[2];
int w = outputBlob->getTensorDesc().getDims()[3];
size_t nunOfPixels = w * h; //写在内存里的结果,还是要拼出来的
std::vector<cv::Mat> imgPlanes{ cv::Mat(h, w, CV_32FC1, &(outputData[0])),
cv::Mat(h, w, CV_32FC1, &(outputData[nunOfPixels])),
cv::Mat(h, w, CV_32FC1, &(outputData[nunOfPixels * 2])) };
for (auto & img : imgPlanes) //本来是平的
img.convertTo(img, CV_8UC1, 255);
cv::Mat resultImg;
cv::merge(imgPlanes, resultImg);
showImage(resultImg, IDC_PIC); //显示原始图像
//摄像头显示循环,所有关于采集的操作是通过主线程传递控制变量到采集线程,而后由采集线程完成的
DWORD WINAPI CaptureThread(LPVOID lpParameter)
{
CGOMfcTemplate2Dlg* pDlg = (CGOMfcTemplate2Dlg*)lpParameter;
double t_start = (double)cv::getTickCount(); //开始时间
Mat tmpPrydown;
//#pragma omp parallel for
while (true)
{
if (pDlg->b_closeCam)//退出循环
break;
double t = ((double)cv::getTickCount() - t_start) / getTickFrequency();
if (t <= 0.1)//fps =10,主动降低速度
{
Sleep(100);
continue;
}
else
{
t_start = (double)cv::getTickCount();
}
//从directX中获得当前图像并显示出来
IplImage* queryframe = pDlg->cameraDs.QueryFrame();
//在2.0版本中可以强转,在3.0中需要使用函数
Mat camframe = cvarrToMat(queryframe);
pDlg->showImage(camframe, IDC_CAM); //显示原始图像
////根据条件,决定是否采用算法
Mat dst;
Mat img;
Mat tmp;
Mat divideGaussMin;
Mat divideGaussMiddle;
Mat divideGaussMax;
cvtColor(camframe, img, COLOR_BGR2GRAY);
cvtColor(img, img, COLOR_GRAY2BGR);
if (pDlg->bMethod) //这里实现的是灰度转彩色
{
//算法
if (img.empty())
{
return -1;
}
std::string firstOutputName = pDlg->IENetSetup(pDlg->network);
InferRequest infer_request = pDlg->executableNetwork.CreateInferRequest();
Blob::Ptr lrInputBlob = infer_request.GetBlob("data");
matU8ToBlob<float_t>(img, lrInputBlob, 0);//重要的转换函数,第3个参数是batchSize,应该是自己+1的
// ---------------------------推断结果 -------------------------------------------------
infer_request.Infer();//多张图片多次推断
// ---------------------------处理结果-------------------------------------------------------
const Blob::Ptr outputBlob = infer_request.GetBlob(firstOutputName);
const auto outputData = outputBlob->buffer().as<PrecisionTrait<Precision::FP32>::value_type*>();
size_t numOfImages = outputBlob->getTensorDesc().getDims()[0];
size_t numOfChannels = outputBlob->getTensorDesc().getDims()[1];
int h = outputBlob->getTensorDesc().getDims()[2];
int w = outputBlob->getTensorDesc().getDims()[3];
size_t nunOfPixels = w * h; //写在内存里的结果,还是要拼出来的
std::vector<cv::Mat> imgPlanes{ cv::Mat(h, w, CV_32FC1, &(outputData[0])),
cv::Mat(h, w, CV_32FC1, &(outputData[nunOfPixels])),
cv::Mat(h, w, CV_32FC1, &(outputData[nunOfPixels * 2])) };
for (auto & img : imgPlanes) //本来是平的
img.convertTo(img, CV_8UC1, 255);
cv::merge(imgPlanes, dst);
}
else
{
dst = img.clone();
}
pDlg->showImage(dst, IDC_PIC); //显示网络处理图像
}
return 0;
}
附件列表
[E2E_L9]GOMFCTemplate的融合进阶的更多相关文章
- [E2E_L8_1]segmentation_demo道路分割例子和GOMFCTemplate的初步融合
一.来源 模型例子自己带来副图像 二.简化 #include <algorithm> #include <fstream> #include <iomanip ...
- (E2E_L2)GOMfcTemplate在vs2017上的运行并融合Dnn模块
GOMfcTemplate一直运行在VS2012上运行的,并且开发出来了多个产品.在技术不断发展的过程中,出现了一些新的矛盾:1.由于需要使用DNN模块,而这个模块到了4.0以上的OpenCV才支持的 ...
- [BZOI2014]大融合——————线段树进阶
竟然改了不到一小时就改出来了, 可喜可贺 Description Solution 一开始想的是边两侧简单路径之和的乘积,之后发现这是个树形结构,简单路径数就是节点数. 之后的难点就变成了如何求线段树 ...
- C#进阶系列——WebApi 接口参数不再困惑:传参详解
前言:还记得刚使用WebApi那会儿,被它的传参机制折腾了好久,查阅了半天资料.如今,使用WebApi也有段时间了,今天就记录下API接口传参的一些方式方法,算是一个笔记,也希望能帮初学者少走弯路.本 ...
- NLP系列(4)_朴素贝叶斯实战与进阶
作者: 寒小阳 && 龙心尘 时间:2016年2月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50629608 htt ...
- Ionic APP-Web SPA开发进阶(一)AngularJS全栈工程狮进阶
AngularJS全栈工程狮进阶 前言 学习了一段时间AngularJS,开始接触移动端APP开发.为了响应公司开发需求,采用"Hybrid"混血开发方法.采用Ionic前端框架, ...
- 【进阶3-3期】深度广度解析 call 和 apply 原理、使用场景及实现(转)
这是我在公众号(高级前端进阶)看到的文章,现在做笔记 https://github.com/yygmind/blog/issues/22 call() 和 apply() call() 方法调用一个 ...
- Apollo 1 融合 Spring 的三个入口
前言 Spring 作为 Java 世界非官方标准框架,任何一个中间件想要得到良好的发展,必须完美支持 Spring 的各种特性,即:无缝融入 Spring. Apollo 作为分布式配置中心,服务于 ...
- Scala进阶之路-为什么要学习Scala以及开发环境搭建
Scala进阶之路-为什么要学习Scala以及开发环境搭建 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 最近人工智能和大数据那是相当的火呀,人工智能带动了Python的流行,区块 ...
随机推荐
- 【笔记】MAML-模型无关元学习算法
目录 论文信息: Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networ ...
- 实验之RSTP基础配置
STP升级版之RSTP 实验环境 实验拓扑图 实验编址 实验步骤 1.基本配置配置PC端 测试i相通性 2.配置RSTP基本功能在S1-S4上都使用命令stp mode rstp更改生成树模式(因为华 ...
- 详解MongoDB中的多表关联查询($lookup) (转)
一. 聚合框架 聚合框架是MongoDB的高级查询语言,它允许我们通过转换和合并多个文档中的数据来生成新的单个文档中不存在的信息. 聚合管道操作主要包含下面几个部分: 命令 功能描述 $projec ...
- ThinkPHP模板之一
这个东东,就得多练多写,无它法. 1,Application\Home\Controller\IndexController.class.php <?php namespace Home\Con ...
- Please, another Queries on Array?(Codeforces Round #538 (Div. 2)F+线段树+欧拉函数+bitset)
题目链接 传送门 题面 思路 设\(x=\prod\limits_{i=l}^{r}a_i\)=\(\prod\limits_{i=1}^{n}p_i^{c_i}\) 由欧拉函数是积性函数得: \[ ...
- .netcore发布时指定服务器的系统类型
asp.net core 开发完成后发布,在IIS上面访问,直接报错 系统是windows2008 Application startup exception: System.DllNotFound ...
- 项目Alpha冲刺--8/10
项目Alpha冲刺--8/10 作业要求 这个作业属于哪个课程 软件工程1916-W(福州大学) 这个作业要求在哪里 项目Alpha冲刺 团队名称 基于云的胜利冲锋队 项目名称 云评:高校学生成绩综合 ...
- django-获取购物车商品数量-redis
视图函数views.py中 from django_redis import get_redis_connection # 连接redis class IndexView(View): '''首页'' ...
- P2340 奶牛会展 DP 背包
P2340 奶牛会展 DP \(n\)头牛,每头牛有智商\(s[i]\)情商\(f[i]\),问如何从中选择几头牛使得智商情商之和最大 且 情商之和.智商之和非负 \(n\le 400,-10^3\l ...
- 55、Spark Streaming:updateStateByKey以及基于缓存的实时wordcount程序
一.updateStateByKey 1.概述 SparkStreaming 7*24 小时不间断的运行,有时需要管理一些状态,比如wordCount,每个batch的数据不是独立的而是需要累加的,这 ...