[E2E_L9]GOMFCTemplate的融合进阶
在前面出现的融合方法中,最突出的问题就是每次运算,都需要将整个推断的过程全部操作一遍,这样肯定是费时间的——所以我们需要将能够独立的地方独立出来,但是这个过中非常容易出现溢出的错误——经过一段时间的尝试,终于得到了相对稳定的结果,这里将结果记录下来:
// 用于推断的函数
Mat CGOMfcTemplate2Dlg::IEInfer(Mat m_mainframe)
{
//初始化IE
// --------------------------- 1.为IE准备插件-------------------------------------
InferencePlugin plugin(PluginDispatcher().getSuitablePlugin(TargetDevice::eCPU));
plugin.AddExtension(std::make_shared<Extensions::Cpu::CpuExtensions>());//Extension,useful
// --------------------------- 2.读取IR模型(xml和bin)---------------------------------
CNNNetReader networkReader;
networkReader.ReadNetwork("./road-segmentation-adas-0001.xml");
networkReader.ReadWeights("./road-segmentation-adas-0001.bin");
CNNNetwork network = networkReader.getNetwork();
// --------------------------- 3. 准备输入输出的------------------------------------------
InputsDataMap inputInfo(network.getInputsInfo());//获得输入信息
if (inputInfo.size() != 1) throw std::logic_error("错误,该模型应该为单输入");
auto lrInputInfoItem = inputInfo["data"]; //开始读入
int w = static_cast<int>(lrInputInfoItem->getTensorDesc().getDims()[3]); //模型要求的输入大小
int h = static_cast<int>(lrInputInfoItem->getTensorDesc().getDims()[2]);
network.setBatchSize(1);//只有1副图片,故BatchSize = 1
//准备输出数据
OutputsDataMap outputInfo(network.getOutputsInfo());//获得输出信息
std::string firstOutputName;
for (auto &item : outputInfo) {
if (firstOutputName.empty()) {
firstOutputName = item.first;
}
DataPtr outputData = item.second;
if (!outputData) {
throw std::logic_error("错误的格式,请检查!");
}
item.second->setPrecision(Precision::FP32);
}
// --------------------------- 4. 读取模型 ------------------------------------------(目视第4步骤最消耗时间)
ExecutableNetwork executableNetwork = plugin.LoadNetwork(network, {});
// --------------------------- 5. 创建推断 -------------------------------------------------
infer_request = executableNetwork.CreateInferRequest();
// --------------------------- 6. 将数据塞入模型 -------------------------------------------------
Blob::Ptr lrInputBlob = infer_request.GetBlob("data"); //data这个名字是我看出来的,实际上这里可以更统一一些
matU8ToBlob<float_t>(m_mainframe, lrInputBlob, 0);//重要的转换函数,第3个参数是batchSize,应该是自己+1的
// --------------------------- 7. 推断结果 -------------------------------------------------
infer_request.Infer();//多张图片多次推断
// --------------------------- 8. 处理结果-------------------------------------------------------
const Blob::Ptr outputBlob = infer_request.GetBlob(firstOutputName);
const auto outputData = outputBlob->buffer().as<PrecisionTrait<Precision::FP32>::value_type*>();
size_t numOfImages = outputBlob->getTensorDesc().getDims()[0];
size_t numOfChannels = outputBlob->getTensorDesc().getDims()[1];
h = outputBlob->getTensorDesc().getDims()[2];
w = outputBlob->getTensorDesc().getDims()[3];
size_t nunOfPixels = w * h; //写在内存里的结果,还是要拼出来的
std::vector<cv::Mat> imgPlanes{ cv::Mat(h, w, CV_32FC1, &(outputData[0])),
cv::Mat(h, w, CV_32FC1, &(outputData[nunOfPixels])),
cv::Mat(h, w, CV_32FC1, &(outputData[nunOfPixels * 2])) };
for (auto & img : imgPlanes) //本来是平的
img.convertTo(img, CV_8UC1, 255);
cv::Mat resultImg;
cv::merge(imgPlanes, resultImg);
return resultImg;
}

ExecutableNetwork executableNetwork = plugin.LoadNetwork(network, {});
infer_request.Infer();//多张图片多次推断


CNNNetwork CGOMfcTemplate2Dlg::IENetWork(string strXML, string strBIN)
{
CNNNetReader networkReader;
networkReader.ReadNetwork(strXML);
networkReader.ReadWeights(strBIN);
CNNNetwork network = networkReader.getNetwork();
return network;
}
string CGOMfcTemplate2Dlg::IENetSetup(CNNNetwork network)
{
InputsDataMap inputInfo(network.getInputsInfo());//获得输入信息
BlobMap inputBlobs; //保持所有输入的blob数据
if (inputInfo.size() != 1) throw std::logic_error("错误,该模型应该为单输入");
auto lrInputInfoItem = inputInfo["data"]; //开始读入
int h = static_cast<int>(lrInputInfoItem->getTensorDesc().getDims()[2]);
int w = static_cast<int>(lrInputInfoItem->getTensorDesc().getDims()[3]); //模型要求的输入大小
network.setBatchSize(1);//只有1副图片,故BatchSize = 1
//准备输出数据
OutputsDataMap outputInfo(network.getOutputsInfo());//获得输出信息
std::string firstOutputName;
for (auto &item : outputInfo) {
if (firstOutputName.empty()) {
firstOutputName = item.first;
}
DataPtr outputData = item.second;
if (!outputData) {
throw std::logic_error("错误的格式,请检查!");
}
item.second->setPrecision(Precision::FP32);
}
return firstOutputName;
}
InferencePlugin CGOMfcTemplate2Dlg::IEplugin(CNNNetwork network)
{
InferencePlugin plugin(PluginDispatcher().getSuitablePlugin(TargetDevice::eCPU));
plugin.AddExtension(std::make_shared<Extensions::Cpu::CpuExtensions>());//Extension,useful
return plugin;
}
ExecutableNetwork CGOMfcTemplate2Dlg::getNetWork(InferencePlugin plugin, CNNNetwork network)
{
ExecutableNetwork executableNetwork = plugin.LoadNetwork(network, {});
return executableNetwork;
}

std::string firstOutputName = IENetSetup(network);
InferRequest infer_request = executableNetwork.CreateInferRequest();
Blob::Ptr lrInputBlob = infer_request.GetBlob("data");
matU8ToBlob<float_t>(m_mainframe, lrInputBlob, 0);//重要的转换函数,第3个参数是batchSize,应该是自己+1的
// ---------------------------推断结果 -------------------------------------------------
infer_request.Infer();//多张图片多次推断
// ---------------------------处理结果-------------------------------------------------------
const Blob::Ptr outputBlob = infer_request.GetBlob(firstOutputName);
const auto outputData = outputBlob->buffer().as<PrecisionTrait<Precision::FP32>::value_type*>();
size_t numOfImages = outputBlob->getTensorDesc().getDims()[0];
size_t numOfChannels = outputBlob->getTensorDesc().getDims()[1];
int h = outputBlob->getTensorDesc().getDims()[2];
int w = outputBlob->getTensorDesc().getDims()[3];
size_t nunOfPixels = w * h; //写在内存里的结果,还是要拼出来的
std::vector<cv::Mat> imgPlanes{ cv::Mat(h, w, CV_32FC1, &(outputData[0])),
cv::Mat(h, w, CV_32FC1, &(outputData[nunOfPixels])),
cv::Mat(h, w, CV_32FC1, &(outputData[nunOfPixels * 2])) };
for (auto & img : imgPlanes) //本来是平的
img.convertTo(img, CV_8UC1, 255);
cv::Mat resultImg;
cv::merge(imgPlanes, resultImg);
showImage(resultImg, IDC_PIC); //显示原始图像
//摄像头显示循环,所有关于采集的操作是通过主线程传递控制变量到采集线程,而后由采集线程完成的
DWORD WINAPI CaptureThread(LPVOID lpParameter)
{
CGOMfcTemplate2Dlg* pDlg = (CGOMfcTemplate2Dlg*)lpParameter;
double t_start = (double)cv::getTickCount(); //开始时间
Mat tmpPrydown;
//#pragma omp parallel for
while (true)
{
if (pDlg->b_closeCam)//退出循环
break;
double t = ((double)cv::getTickCount() - t_start) / getTickFrequency();
if (t <= 0.1)//fps =10,主动降低速度
{
Sleep(100);
continue;
}
else
{
t_start = (double)cv::getTickCount();
}
//从directX中获得当前图像并显示出来
IplImage* queryframe = pDlg->cameraDs.QueryFrame();
//在2.0版本中可以强转,在3.0中需要使用函数
Mat camframe = cvarrToMat(queryframe);
pDlg->showImage(camframe, IDC_CAM); //显示原始图像
////根据条件,决定是否采用算法
Mat dst;
Mat img;
Mat tmp;
Mat divideGaussMin;
Mat divideGaussMiddle;
Mat divideGaussMax;
cvtColor(camframe, img, COLOR_BGR2GRAY);
cvtColor(img, img, COLOR_GRAY2BGR);
if (pDlg->bMethod) //这里实现的是灰度转彩色
{
//算法
if (img.empty())
{
return -1;
}
std::string firstOutputName = pDlg->IENetSetup(pDlg->network);
InferRequest infer_request = pDlg->executableNetwork.CreateInferRequest();
Blob::Ptr lrInputBlob = infer_request.GetBlob("data");
matU8ToBlob<float_t>(img, lrInputBlob, 0);//重要的转换函数,第3个参数是batchSize,应该是自己+1的
// ---------------------------推断结果 -------------------------------------------------
infer_request.Infer();//多张图片多次推断
// ---------------------------处理结果-------------------------------------------------------
const Blob::Ptr outputBlob = infer_request.GetBlob(firstOutputName);
const auto outputData = outputBlob->buffer().as<PrecisionTrait<Precision::FP32>::value_type*>();
size_t numOfImages = outputBlob->getTensorDesc().getDims()[0];
size_t numOfChannels = outputBlob->getTensorDesc().getDims()[1];
int h = outputBlob->getTensorDesc().getDims()[2];
int w = outputBlob->getTensorDesc().getDims()[3];
size_t nunOfPixels = w * h; //写在内存里的结果,还是要拼出来的
std::vector<cv::Mat> imgPlanes{ cv::Mat(h, w, CV_32FC1, &(outputData[0])),
cv::Mat(h, w, CV_32FC1, &(outputData[nunOfPixels])),
cv::Mat(h, w, CV_32FC1, &(outputData[nunOfPixels * 2])) };
for (auto & img : imgPlanes) //本来是平的
img.convertTo(img, CV_8UC1, 255);
cv::merge(imgPlanes, dst);
}
else
{
dst = img.clone();
}
pDlg->showImage(dst, IDC_PIC); //显示网络处理图像
}
return 0;
}
附件列表
[E2E_L9]GOMFCTemplate的融合进阶的更多相关文章
- [E2E_L8_1]segmentation_demo道路分割例子和GOMFCTemplate的初步融合
一.来源 模型例子自己带来副图像 二.简化 #include <algorithm> #include <fstream> #include <iomanip ...
- (E2E_L2)GOMfcTemplate在vs2017上的运行并融合Dnn模块
GOMfcTemplate一直运行在VS2012上运行的,并且开发出来了多个产品.在技术不断发展的过程中,出现了一些新的矛盾:1.由于需要使用DNN模块,而这个模块到了4.0以上的OpenCV才支持的 ...
- [BZOI2014]大融合——————线段树进阶
竟然改了不到一小时就改出来了, 可喜可贺 Description Solution 一开始想的是边两侧简单路径之和的乘积,之后发现这是个树形结构,简单路径数就是节点数. 之后的难点就变成了如何求线段树 ...
- C#进阶系列——WebApi 接口参数不再困惑:传参详解
前言:还记得刚使用WebApi那会儿,被它的传参机制折腾了好久,查阅了半天资料.如今,使用WebApi也有段时间了,今天就记录下API接口传参的一些方式方法,算是一个笔记,也希望能帮初学者少走弯路.本 ...
- NLP系列(4)_朴素贝叶斯实战与进阶
作者: 寒小阳 && 龙心尘 时间:2016年2月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50629608 htt ...
- Ionic APP-Web SPA开发进阶(一)AngularJS全栈工程狮进阶
AngularJS全栈工程狮进阶 前言 学习了一段时间AngularJS,开始接触移动端APP开发.为了响应公司开发需求,采用"Hybrid"混血开发方法.采用Ionic前端框架, ...
- 【进阶3-3期】深度广度解析 call 和 apply 原理、使用场景及实现(转)
这是我在公众号(高级前端进阶)看到的文章,现在做笔记 https://github.com/yygmind/blog/issues/22 call() 和 apply() call() 方法调用一个 ...
- Apollo 1 融合 Spring 的三个入口
前言 Spring 作为 Java 世界非官方标准框架,任何一个中间件想要得到良好的发展,必须完美支持 Spring 的各种特性,即:无缝融入 Spring. Apollo 作为分布式配置中心,服务于 ...
- Scala进阶之路-为什么要学习Scala以及开发环境搭建
Scala进阶之路-为什么要学习Scala以及开发环境搭建 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 最近人工智能和大数据那是相当的火呀,人工智能带动了Python的流行,区块 ...
随机推荐
- 【RAC】 RAC For W2K8R2 安装--共享磁盘的配置(三)
[RAC] RAC For W2K8R2 安装--共享磁盘的配置(三) 一.1 BLOG文档结构图 一.2 前言部分 一.2.1 导读 各位技术爱好者,看完本文后,你可以掌握如下的技能,也可以学 ...
- day 04 预科
目录 变量 什么是变量 变量的组成 变量名的命名规范 注释 单行注释 多行注释 turtle库的使用 今日内容 数据类型基础 变量 具体的值 存不是目的,取才是目的 为了描述世界万物的状态,因此有了数 ...
- H3C WLAN相关组织和标准
- less-5
首先输入id=1和id=1’未报错,均显示You are in.....(如下图所示) 由上图可以看到,如果运行返回结果正确的时候只返回you are in...,不会返回数据库当中的信息了,所以我们 ...
- docker postgresql 数据库
1. 使用docker 镜像 获取镜像:docker pull postgres:9.4 启动: docker run --name postgres1 -e POSTGRES_PASSWORD=pa ...
- strtok在keil中使用小笔记及字符串转换为多个浮点数的方法
在pc上面使用这个字符串函数,是没有问题的,但是我在keil中结合rtos来处理字符串的时候,比如char *s = "1.01313;17.2609;17.4875";那么就只能 ...
- Centos7安装Hive2.3
准备 1.hadoop已部署(若没有可以参考:Centos7安装Hadoop2.7),集群情况如下: hostname IP地址 部署规划 node1 172.20.0.4 NameNode.Data ...
- 004——转载—Word2016“此功能看似已中断 并需要修复”问题解决办法
解决办法如下: 在Win10系统上安装 Office 2016 之后,每次打开Word文档可能都会提示“很抱歉,此功能看似已中断,并需要修复,请使用Windows 控制面板中的“程序和功能”选项修复M ...
- C1010 unexpected end of file while looking for precompiled header. Did you forget to add '#include "stdafx.h"' to your source
提示说是预编译出现问题,提示添加头文件stdafx.h,但是添加了也会继续有其他错误解决方法: 在菜单Project->Properties(或者直接快捷键Alt+F7)->C/C++-& ...
- WinDbg命令窗口的使用
调试器命令窗口是windbg中的主要调试信息窗口.可以在此窗口中输入调试程序命令并查看命令输出.Windbg的命令窗口是我们进行调试时,主要打交道的窗口.界面如下 对于windbg,“调试器命令窗口” ...