[LeetCode] 834. Sum of Distances in Tree 树中距离之和
An undirected, connected tree with `N` nodes labelled `0...N-1` and `N-1` `edges` are given.
The ith edge connects nodes edges[i][0] and edges[i][1] together.
Return a list ans, where ans[i] is the sum of the distances between node i and all other nodes.
Example 1:
Input: N = 6, edges = [[0,1],[0,2],[2,3],[2,4],[2,5]]
Output: [8,12,6,10,10,10]
Explanation:
Here is a diagram of the given tree:
0
/ \
1 2
/|\
3 4 5
We can see that dist(0,1) + dist(0,2) + dist(0,3) + dist(0,4) + dist(0,5)
equals 1 + 1 + 2 + 2 + 2 = 8. Hence, answer[0] = 8, and so on.
这道题给了一棵树,实际上是无向图,让求每个结点到其他所有结点的距离之和。这里并没有定义树结构,而是给了每条边的两端结点,那么还是先建立邻接链表吧,然后当作无向图来处理吧。由于结点的个数为N,所以直接用二维数组建立邻接链表,注意无向图是双向的。好,现在表示树的数据结构有了,该如何求距离之和呢?先从最简单的例子还是看吧,假如只有一个结点的话,由于不存在其他结点,则也没有距离之说,所以是0。若有连两个结点,比如下面所示:
0
/
1
对于结点0来说,距离之和为1,因为只有结点1距离其为1,此时结点0只有1个子结点。若有三个结点的话,比如:
0
/ \
1 2
则所有结点到结点0的距离之和为2,而结点0也正好有两个子结点,是不是有某种联系呢,还是说我们想多了?再来看一个稍稍复杂些的例子吧:
0
/ \
1 2
/ \
3 4
这里的话所有结点到结点0的距离之和为6,显然不是子结点的个数,整个树也就5个结点。对于左子树,这个正好是上一个讨论的例子,左子树中到结点1的距离之和为2,而左子树总共有3个结点,加起来是5。而右子树只有一个结点2,在右子树中的距离之和为0,右子树总共有1个结点,5加上1,正好是6?恭喜,这就是算每个子树中的结点到子树根结的距离之和的方法,即所有子结点的距离之和加上以子结点为根的子树结点个数。说的好晕啊,用代码来表示吧,需要两个数组 count 和 res,其中 count[i] 表示以结点i为根结点的子树中结点的个数,res[i] 表示其他所有结点到结点i的距离之和。根据上面的规律,可以总结出下面两个式子:
count[root] = sum(count[i]) + 1
res[root] = sum(res[i]) + sum(count[i])
这里的 root 表示所有的子树的根结点,i表示的是 root 的相连子结点,注意必须是相连的,这里不一定是二叉树,所有可能会有多个子结点。另外需要注意的是这里的 res[root] 表示的是以 root 为根结点的子树中所有的结点到 root 的距离之和,其他非子树中结点的距离之和还没有统计。可以发现这两个式子中当前结点的值都是由其子结点决定的,这种由下而上的特点天然适合用后序遍历来做,可以参见这道题 Binary Tree Postorder Traversal,还好这里不用写迭代形式的后序遍历,用递归写就简单的多了。同时还要注意的是用邻接链表表示的无向图遍历时,为了避免死循环,一般是要记录访问过的结点的,这里由于是树的结构,不会存在环,所以可以简单化,直接记录上一个结点 pre 就行了,只有当前结点i和 pre 不同才继续处理。
好,更新完了所有的 count[root] 和 res[root] 之后,就要来更新所有的 res[i] 了,因为上面的讲解提到了 res[root] 表示的是以 root 为根结点的子树中所有的结点到 root 的距离,那么子树之外的结点到 root 的距离也得加上,才是最终要求的 res[i]。虽然现在还没有更新所有的 res[i],但是有一个结点的 res 值是正确的,就是整个树的根结点,这个真正的 res[root] 值是正确的!现在假设要计算 root 结点的一个子结点i的 res 值,即要计算所有结点到结点i的距离,此时知道以结点i为根结点的子树的总结点个数为 count[i],而这 count[i] 个结点之前在算 res[root] 时是到根结点 root 的距离,但是现在只要计算到结点i的距离,所以这 count[i] 个结点的距离都少了1,而其他所有的结点,共 N - count[i] 个,离结点i的距离比离 root 结点的距离都增加了1,所以 res[i] 的更新方法如下:
res[i] = res[root] - count[i] + N - count[i]
这里是从上而下的更新,可以使用最常用的先序遍历,可以参见这道题 Binary Tree Preorder Traversal,这样更新下来,所有的 res[i] 就都是题目中要求的值了,参见代码如下:
class Solution {
public:
vector<int> sumOfDistancesInTree(int N, vector<vector<int>>& edges) {
vector<int> res(N), count(N);
vector<vector<int>> tree(N);
for (auto &edge : edges) {
tree[edge[0]].push_back(edge[1]);
tree[edge[1]].push_back(edge[0]);
}
helper(tree, 0, -1, count, res);
helper2(tree, 0, -1, count, res);
return res;
}
void helper(vector<vector<int>>& tree, int cur, int pre, vector<int>& count, vector<int>& res) {
for (int i : tree[cur]) {
if (i == pre) continue;
helper(tree, i, cur, count, res);
count[cur] += count[i];
res[cur] += res[i] + count[i];
}
++count[cur];
}
void helper2(vector<vector<int>>& tree, int cur, int pre, vector<int>& count, vector<int>& res) {
for (int i : tree[cur]) {
if (i == pre) continue;
res[i] = res[cur] - count[i] + count.size() - count[i];
helper2(tree, i, cur, count, res);
}
}
};
讨论:整体来说,这道题算是相当有难度的一道题,同时考察了邻接链表的建立,无向图的遍历,树的先序和后序遍历,以及对复杂度的拆分能力,总之是非常棒的一道题,博主非常喜欢~
Github 同步地址:
https://github.com/grandyang/leetcode/issues/834
类似题目:
Binary Tree Postorder Traversal
Binary Tree Preorder Traversal
Distribute Coins in Binary Tree
参考资料:
https://leetcode.com/problems/sum-of-distances-in-tree/
https://leetcode.com/problems/sum-of-distances-in-tree/discuss/161975/My-DFS-sulotion-two-passes
[LeetCode All in One 题目讲解汇总(持续更新中...)](https://www.cnblogs.com/grandyang/p/4606334.html)
[LeetCode] 834. Sum of Distances in Tree 树中距离之和的更多相关文章
- [LeetCode] 834. Sum of Distances in Tree
LeetCode刷题记录 传送门 Description An undirected, connected treewith N nodes labelled 0...N-1 and N-1 edge ...
- 834. Sum of Distances in Tree —— weekly contest 84
Sum of Distances in Tree An undirected, connected tree with N nodes labelled 0...N-1 and N-1 edges a ...
- 【leetcode】834. Sum of Distances in Tree(图算法)
There is an undirected connected tree with n nodes labeled from 0 to n - 1 and n - 1 edges. You are ...
- Java实现 LeetCode 834 树中距离之和(DFS+分析)
834. 树中距离之和 给定一个无向.连通的树.树中有 N 个标记为 0-N-1 的节点以及 N-1 条边 . 第 i 条边连接节点 edges[i][0] 和 edges[i][1] . 返回一个表 ...
- [Swift]LeetCode834. 树中距离之和 | Sum of Distances in Tree
An undirected, connected tree with N nodes labelled 0...N-1 and N-1 edges are given. The ith edge co ...
- 树中的路径和 Sum of Distances in Tree
2019-03-28 15:25:43 问题描述: 问题求解: 写过的最好的Hard题之一. 初看本题,很经典的路径和嘛,dfs一遍肯定可以得到某个节点到其他所有节点的距离和.这种算法的时间复杂度是O ...
- leetcode834 Sum of Distances in Tree
思路: 树形dp. 实现: class Solution { public: void dfs(int root, int p, vector<vector<int>>& ...
- LeetCode 404. Sum of Left Leaves (左子叶之和)
Find the sum of all left leaves in a given binary tree. Example: 3 / \ 9 20 / \ 15 7 There are two l ...
- [LeetCode] Two Sum III - Data structure design 两数之和之三 - 数据结构设计
Design and implement a TwoSum class. It should support the following operations:add and find. add - ...
随机推荐
- 【shell脚本】通过位置变量创建Linux账户及密码===addUser.sh
通过位置变量创建Linux账户及密码 脚本内容 [root@VM_0_10_centos shellScript]# vi addUser.sh #!/bin/bash # 通过位置变量创建系统账户及 ...
- asp.net core系列 62 CQRS架构下Equinox开源项目分析
一.DDD分层架构介绍 本篇分析CQRS架构下的Equinox开源项目.该项目在github上star占有2.4k.便决定分析Equinox项目来学习下CQRS架构.再讲CQRS架构时,先简述下DDD ...
- 线程池之ScheduledThreadPoolExecutor线程池源码分析笔记
1.ScheduledThreadPoolExecutor 整体结构剖析. 1.1类图介绍 根据上面类图图可以看到Executor其实是一个工具类,里面提供了好多静态方法,根据用户选择返回不同的线程池 ...
- sso单点登录的入门(Session跨域、Spring-Session共享)
1.单点登录,就是多系统,单一位置登录,实现多系统同时登录的一种技术.单点登录一般是用于互相授信的系统,实现单一位置登录,全系统有效的. 区分与三方登录(第三方登录) ,三方登录:某系统,使用其他系统 ...
- C# winform 获取鼠标点击位置
说明:该篇随笔的代码内容并非出自本人,是在其他网站搜寻的,出处已经不记得了,本次随笔只为记录,目的帮助自己,帮助他人. 实现的原理也不做多的赘述,直接上代码. 第一个类是需要用到的Windows AP ...
- mac中使用expect脚本,让iTerms保存密码登录ssh
最近工作中需要使用ssh连接到centos服务器中,以前公司都是直接配的私钥就可以免密登录了.这里还用的密码. 由于,我一直用的是iTerm2,所以在网上搜索了下,找到了一种方案,那就是expect脚 ...
- python3模块
一.sys模块 import sys #print(sys.path) #打印环境变量 #print(sys.argv) print(sys.argv[3]) Sys.argv[ ]其实就是一个列表, ...
- Java生鲜电商平台-商品价格的设计与架构
Java生鲜电商平台-商品价格的设计与架构 说明:Java开源生鲜电商平台-商品价格的设计与架构,主要是对商品的价格进行研究与系统架构. 一.常见的电商价格 市场价(List Price):这个价格仅 ...
- Asp.Net MVC强类型页面获取值几种方式
方式一 (V:视图) @{ Layout = null; } <!DOCTYPE html> <html> <head> <meta name="v ...
- JOIN中的外连接(external join)
外连接: ---外连接并不要求连接的两表的每一条记录在对方表中都有一条匹配记录.要保留所有记录(甚至这条记录没有匹配的记录也要保留)的表成为保留表.外连接可以一句连接表保 留左表,右表和全部表的行二进 ...