You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

Note: Given n will be a positive integer.

Example 1:

Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps

Example 2:

Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step

这篇博客最开始名字叫做爬梯子问题,总是有童鞋向博主反映移动端打不开这篇博客,博主觉得非常奇怪,自己也试了一下,果然打不开。心想着是不是这个博客本身有问题,于是想再开一个相同的帖子,结果还是打不开,真是见了鬼了。于是博主换了个名字,结果居然打开了?!进经过排查后发现,原来是“爬梯子”这三个字是敏感词,放到标题里面,博客就被屏蔽了,我也真是醉了,完全是躺枪好么,无奈之下,只好改名为爬楼梯问题了 -。-|||。

这个爬梯子问题最开始看的时候没搞懂是让干啥的,后来看了别人的分析后,才知道实际上跟斐波那契数列非常相似,假设梯子有n层,那么如何爬到第n层呢,因为每次只能爬1或2步,那么爬到第n层的方法要么是从第 n-1 层一步上来的,要不就是从 n-2 层2步上来的,所以递推公式非常容易的就得出了:dp[n] = dp[n-1] + dp[n-2]。 由于斐波那契额数列的求解可以用递归,所以博主最先尝试了递归,拿到 OJ 上运行,显示 Time Limit Exceeded,就是说运行时间超了,因为递归计算了很多分支,效率很低,这里需要用动态规划 (Dynamic Programming) 来提高效率,代码如下:

C++ 解法一:

class Solution {
public:
int climbStairs(int n) {
if (n <= ) return ;
vector<int> dp(n);
dp[] = ; dp[] = ;
for (int i = ; i < n; ++i) {
dp[i] = dp[i - ] + dp[i - ];
}
return dp.back();
}
};

Java 解法一:

public class Solution {
public int climbStairs(int n) {
if (n <= 1) return 1;
int[] dp = new int[n];
dp[0] = 1; dp[1] = 2;
for (int i = 2; i < n; ++i) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n - 1];
}
}

我们可以对空间进行进一步优化,只用两个整型变量a和b来存储过程值,首先将 a+b 的值赋给b,然后a赋值为原来的b,所以应该赋值为 b-a 即可。这样就模拟了上面累加的过程,而不用存储所有的值,参见代码如下:

C++ 解法二:

class Solution {
public:
int climbStairs(int n) {
int a = , b = ;
while (n--) {
b += a;
a = b - a;
}
return a;
}
};

Java 解法二:

public class Solution {
public int climbStairs(int n) {
int a = 1, b = 1;
while (n-- > 0) {
b += a;
a = b - a;
}
return a;
}
}
虽然前面说过递归的写法会超时,但是只要加上记忆数组,那就不一样了,因为记忆数组可以保存计算过的结果,这样就不会存在重复计算了,大大的提高了运行效率,其实递归加记忆数组跟迭代的 DP 形式基本是大同小异的,参见代码如下:

C++ 解法三:

class Solution {
public:
int climbStairs(int n) {
vector<int> memo(n + );
return helper(n, memo);
}
int helper(int n, vector<int>& memo) {
if (n <= ) return ;
if (memo[n] > ) return memo[n];
return memo[n] = helper(n - , memo) + helper(n - , memo);
}
};

Java 解法三:

public class Solution {
public int climbStairs(int n) {
int[] memo = new int[n + 1];
return helper(n, memo);
}
public int helper(int n, int[] memo) {
if (n <= 1) return 1;
if (memo[n] > 0) return memo[n];
return memo[n] = helper(n - 1, memo) + helper(n - 2, memo);
}
}
论坛上还有一种分治法 Divide and Conquer 的解法,用的是递归形式,可以通过,但是博主没有十分理解,希望各位看官大神可以跟博主讲一讲~

C++ 解法四:

class Solution {
public:
int climbStairs(int n) {
if(n <= ) return ;
return climbStairs(n / ) * climbStairs(n - n / ) + climbStairs(n / - ) * climbStairs(n - n / - );
}
};

Java 解法四:

public class Solution {
public int climbStairs(int n) {
if(n <= 1) return 1;
return climbStairs(n / 2) * climbStairs(n - n / 2) + climbStairs(n / 2 - 1) * climbStairs(n - n / 2 - 1);
}
}

最后来看一种叼炸天的方法,其实斐波那契数列是可以求出通项公式的,推理的过程请参见 知乎上的这个贴子,那么有了通项公式后,直接在常数级的时间复杂度范围内就可以求出结果了,参见代码如下:

C++ 解法五:

class Solution {
public:
int climbStairs(int n) {
double root5 = sqrt();
return ( / root5) * (pow(( + root5) / , n + ) - pow(( - root5) / , n + ));
}
};

Java 解法五:

public class Solution {
public int climbStairs(int n) {
double root5 = Math.sqrt(5);
double res = (1 / root5) * (Math.pow((1 + root5) / 2, n + 1) - Math.pow((1 - root5) / 2, n + 1));
return (int)res;
}
}

Github 同步地址:

https://github.com/grandyang/leetcode/issues/70

类似题目:

Min Cost Climbing Stairs

Fibonacci Number

参考资料:

https://leetcode.com/problems/climbing-stairs/

https://leetcode.com/problems/climbing-stairs/discuss/25345/Easy-solutions-for-suggestions.

https://leetcode.com/problems/climbing-stairs/discuss/25296/3-4-short-lines-in-every-language

https://leetcode.com/problems/climbing-stairs/discuss/25608/My-divide-and-conquer-way-to-solve-this-problem(Java)

https://leetcode.com/problems/climbing-stairs/discuss/25436/Using-the-Fibonacci-formular-to-get-the-answer-directly

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 70. Climbing Stairs 爬楼梯问题的更多相关文章

  1. [LeetCode] 70. Climbing Stairs 爬楼梯

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  2. LeetCode 70. Climbing Stairs爬楼梯 (C++)

    题目: You are climbing a stair case. It takes n steps to reach to the top. Each time you can either cl ...

  3. [leetcode]70. Climbing Stairs爬楼梯

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  4. Leetcode 70. Climbing Stairs 爬楼梯 (递归,记忆化,动态规划)

    题目描述 要爬N阶楼梯,每次你可以走一阶或者两阶,问到N阶有多少种走法 测试样例 Input: 2 Output: 2 Explanation: 到第二阶有2种走法 1. 1 步 + 1 步 2. 2 ...

  5. 70. Climbing Stairs爬楼梯

    网址:https://leetcode.com/problems/climbing-stairs/ 其实就是斐波那契数列,没什么好说的. 注意使用3个变量,而不是数组,可以节约空间. class So ...

  6. Leetcode#70. Climbing Stairs(爬楼梯)

    题目描述 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解 ...

  7. 42. leetcode 70. Climbing Stairs

    70. Climbing Stairs You are climbing a stair case. It takes n steps to reach to the top. Each time y ...

  8. LN : leetcode 70 Climbing Stairs

    lc 70 Climbing Stairs 70 Climbing Stairs You are climbing a stair case. It takes n steps to reach to ...

  9. leetCode 70.Climbing Stairs (爬楼梯) 解题思路和方法

    Climbing Stairs  You are climbing a stair case. It takes n steps to reach to the top. Each time you ...

随机推荐

  1. LeetCode 557:反转字符串中的单词 III Reverse Words in a String III

    公众号:爱写bug(ID:icodebugs) 给定一个字符串,你需要反转字符串中每个单词的字符顺序,同时仍保留空格和单词的初始顺序. Given a string, you need to reve ...

  2. sitecore 如何创建一个渠道分类

    您可以通过渠道跟踪联系人与您的品牌的所有互动.您可以将渠道与广告系列活动相关联,以便跟踪联系人与您的品牌互动的方式.通过比较各个渠道的目标转化率,您可以了解哪些渠道可以带来更好的联系参与度.您可以在体 ...

  3. FusionInsight大数据开发--HBase应用开发

    HBase应用开发 HBase的定义 HBase是一个高可靠.高性能.面向列.可伸缩的分布式存储系统. 适合于存储大表数据,可以达到实时级别. 利用Hadoop HDFS 作为其文件存储系统,提供实时 ...

  4. Spring源码系列 — 构造和初始化上下文

    探索spring源码实现,精华的设计模式,各种jdk提供的陌生api,还有那么点黑科技都是一直以来想做的一件事!但是读源码是一件非常痛苦的事情,需要有很大的耐心和扎实的基础. 在曾经读两次失败的基础上 ...

  5. virsh console配置

    If you're trying to get to the console, you can either use virt-viewer for the graphical console or ...

  6. Logstash:运用jdbc_streaming来丰富我们的数据

    需要学习的地方:使用logstash获取数据后,然后根据这些数据再从MySQL数据库中进行匹配,增加一些数据到logstash的数据流中,然后输出到es 在IoT物联网时代,我们经常会遇到从传感器采集 ...

  7. SQL Server备份时间段内插入的数据依旧进入了备份文件?(转载)

    问 MSSql我在本机测试了下.为了延长备份时间,找个大的数据库.开始完整备份bak然后再此库新建表,并增添数据.备份结束.==================还原备份后,在还原的数据库内发现新增的表 ...

  8. [20190502]给显示输出加入时间戳.txt

    [20190502]给显示输出加入时间戳.txt --//有别人问我执行脚本中timestamp.pl的代码,实际上有些文章里面有源代码,有一些忘记写上了.--//贴上:$ cat /usr/loca ...

  9. 网络协议SNMP分析技术

    内容一: 1. 打开Ethereal软件开始抓包, 输入命令: snmputil get [目标主机IP地址] public .1.3.6.1.2.1.1.2.0 停止抓包.对SNMP包进行过滤. 2 ...

  10. Factorization Machine算法

    参考: http://stackbox.cn/2018-12-factorization-machine/ https://baijiahao.baidu.com/s?id=1641085157432 ...