存储级别简介

Spark中RDD提供了多种存储级别,除去使用内存,磁盘等,还有一种是OFF_HEAP,称之为 使用JVM堆外内存

https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/storage/StorageLevel.scala

使用OFF_HEAP的优点:在内存有限时,可以减少频繁GC及不必要的内存消耗(减少内存的使用),提升程序性能。

Spark内存管理根据版本划分为两个阶段:spark1.6[官网给出spark1.5之前(包含spark1.5)]之前阶段、spark1.6之后阶段。

1.6.0及以后版本,使用的统一内存管理器,由UnifiedMemoryManager实现。

  • ü  MemoryManger在spark1.6之前采用静态内存管理

(StaticMemoryManager[https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/memory/StaticMemoryManager.scala]),

  • ü  Spark1.6之后默认为统一内存管理

(UnifiedMemoryManager[https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/memory/UnifiedMemoryManager.scala])统一内存管理模块包括了堆内内存(On-heap Memory)和堆外内存(Off-heap Memory)两大区域

从1.6.0版本开始,Spark内存管理模型发生了变化。旧的内存管理模型由StaticMemoryManager类实现,现在称为“legacy(遗留)”。默认情况下,“Legacy”模式被禁用,这意味着在Spark 1.5.x和1.6.0上运行相同的代码会导致不同的行为。

为了兼容,您可以使用spark.memory.useLegacyMode参数(目前spark2.4版本中也依然保留这个静态内存管理模型)启用“旧”内存模型:

spark.memory.useLegacyMode=true(默认为false)

该参数官网给出的解释:

Whether to enable the legacy memory management mode used in Spark 1.5 and before. The legacy mode rigidly partitions the heap space into fixed-size regions, potentially leading to excessive spilling if the application was not tuned. The following deprecated memory fraction configurations are not read unless this is enabled:

spark.shuffle.memoryFraction

spark.storage.memoryFraction

spark.storage.unrollFraction

在Spark1.x以前,默认的off_heap使用的是Tachyon。但是Spark中默认操作Tachyon的TachyonBlockManager开发完成之后,代码就不再更新。当Tachyon升级为Alluxio之后移除不使用的API,导致Spark默认off_heap不可用(spark1.6+)。

错误情况可参考:https://alluxio.atlassian.net/browse/ALLUXIO-1881

Spark2.0的OFF_HEAP

从spark2.0开始,移除默认的TachyonBlockManager以及ExternalBlockManager相关的API。

移除情况可参考:https://issues.apache.org/jira/browse/SPARK-12667。

但是在Spark2.x的版本中,OFF_HEAP这一存储级别,依然存在:

https://github.com/apache/spark/blob/branch-2.4/core/src/main/java/org/apache/spark/memory/MemoryMode.java

那么,这里的OFF_HEAD 数据是如何存储的呢?

在org.apache.spark.memory中,有一个MemoryMode,MemoryMode标记了是使用ON_HEAP还是OFF_HEAP。

https://github.com/apache/spark/blob/branch-2.4/core/src/main/java/org/apache/spark/memory/MemoryMode.java

在org.apache.spark.storage.memory.MemoryStore中,根据MemoryMode类型来调用不同的存储。

https://github.com/apache/spark/blob/branch-2.4/core/src/main/scala/org/apache/spark/storage/memory/MemoryStore.scala

在MemoryStore中putIteratorAsBytes方法,是用于存储数据的方法。

其实真正管理(存储)values的对象是valuesHolder,valueHolder是SerializedValuesHolder的类对象,我们看下SerializedValuesHolder是怎么定义的。

在该方法中,OFF_HEAP使用的是org.apache.spark.unsafe.Platform(https://github.com/apache/spark/blob/master/common/unsafe/src/main/java/org/apache/spark/unsafe/Platform.java)来做底层存储的,Platform是利用java unsafe API实现的一个访问off_heap的类,所以,spark2.x的OFF_HEAP就是利用java unsafe API实现的内存管理。

Spark2.x OFF_HEAP优势:

  • ü  优点:在内存有限时,可以减少频繁GC及不必要的内存消耗(减少内存的使用,),提升程序性能。
  • ü  缺点:没有数据备份,也不能像alluxio那样保证数据高可用,丢失数据则需要重新计算。

参考

《Spark2.x 内存管理之---OFF_HEAP https://blog.csdn.net/qq_21439395/article/details/80773121

  • 关于 java  unsafe API 可参考:

《Java中Unsafe类详解 https://www.cnblogs.com/mickole/articles/3757278.html 》

《JAVA并发编程学习笔记之Unsafe类  https://blog.csdn.net/aesop_wubo/article/details/7537278》

Spark(四十六):Spark 内存管理之—OFF_HEAP的更多相关文章

  1. Android简易实战教程--第四十六话《RecyclerView竖向和横向滚动》

    Android5.X后,引入了RecyclerView,这个控件使用起来非常的方便,不但可以完成listView的效果,而且还可以实现ListView无法实现的效果.当然,在新能方便也做了大大的提高. ...

  2. linux基础-第十六单元 yum管理RPM包

    第十六单元 yum管理RPM包 yum的功能 本地yum配置 光盘挂载和镜像挂载 本地yum配置 网络yum配置 网络yum配置 Yum命令的使用 使用yum安装软件 使用yum删除软件 安装组件 删 ...

  3. NeHe OpenGL教程 第四十六课:全屏反走样

    转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...

  4. Linux操作系统基础(四)保护模式内存管理(2)【转】

    转自:http://blog.csdn.net/rosetta/article/details/8570681 Linux操作系统基础(四)保护模式内存管理(2) 转载请注明出处:http://blo ...

  5. 四十六、android中的Bitmap

    四十六.android中的Bitmap: http://www.cnblogs.com/linjiqin/archive/2011/12/28/2304940.html 四十七.实现调用Android ...

  6. “全栈2019”Java第四十六章:继承与字段

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  7. 第四十六个知识点 在Sigma协议中,正确性,公正性和零知识性意味着什么

    第四十六个知识点 在Sigma协议中,正确性,公正性和零知识性意味着什么 Sigma协议 Sigma协议是Alice想要向Bob证明一些东西的协议(Alice知道一些秘密).他们有下面的一般范式:Al ...

  8. spark 源码分析之十六 -- Spark内存存储剖析

    上篇spark 源码分析之十五 -- Spark内存管理剖析 讲解了Spark的内存管理机制,主要是MemoryManager的内容.跟Spark的内存管理机制最密切相关的就是内存存储,本篇文章主要介 ...

  9. Spark 1.6以后的内存管理机制

     Spark 内部管理机制 Spark的内存管理自从1.6开始改变.老的内存管理实现自自staticMemoryManager类,然而现在它被称之为"legacy". " ...

随机推荐

  1. unity4.3.4firedrillonline项目首次整合问题总结

    零.资源导入后把所有资源模型拖到场景中去,并reset Transform,使场景展现原有样子. 一.资源导入之后发现项目场景是黑的,添加灯光之后场景中大部分仍然是黑的(并没有光照的效果) 可能原因: ...

  2. Find 命令记录

    当需要查找一个时间的文件时 使用find [文件目录] -mtime [时间] 例如:查看mysql.bak目录下的1天前的文件 find mysql.bak -mtime 找到此文件之后需要将它移动 ...

  3. Android笔记(六十三) android中的动画——逐帧动画( frame-by-frame animation)

    就好像演电影一样,播放实现准备好的图片,来实现动画效果. 逐帧动画需要用到AnimationDrawable类,该类主要用于创建一个逐帧动画,然后我们把这个动画设置为view的背景即可. androi ...

  4. 使用SikuliX定位Object(flash)元素

    先说一下背景,这个是我们测试的系统上的一个上传文件的地方,但是用传统的selenium方法很难定位的到.具体的样子是下面这样的. 使用id等属性定位做点击操作好像不能直接操作.无奈之下,只好从网上找找 ...

  5. PAT_A1059

    这是一道素数因子分解的问题: 1.先打印素数表出来,以便后期使用,素数表的大小就是10^5级别就可以,因为输入的数是long int(即就是int而已),大小最大21亿(10^10量级的),我们这里素 ...

  6. Java精通并发-从Thread与Runnable说起

    java并发的学习从去年就已经中断了,之前只对于java并发的一些基础进行了一些巩固,对于这个硬技能不管是对于面试还是对于日常的实际开发来说都非常之重要,所以接下来给自己重新定一个新目标,准备重拾它一 ...

  7. linux系统编程之文件与io(四)

    今天继续学习文件与io,主要是学习文件共享及文件.复制文件描述符,有点抽象,主要是概念上的理解,但是很重要,下面一一来分解: 文件共享: 回顾一下,在linux系统调用中,是通过文件描述符来访问文件的 ...

  8. linux系统编程综合练习-实现一个小型的shell程序(一)

    之前已经花了不少篇幅学习了linux系统编程的很多知识点:文件与io.进程.信号.管道,而零散的知识点,怎么能够综合的串接起来是学习的一个很重要的目的,当然最好的方式就是用所学的知识点做一个项目了,所 ...

  9. nginx简单学习

    1.nginx的安装 .yum解决编译nginx所需的依赖包,之后你的nginx就不会报错了 yum install gcc patch libffi-devel python-devel zlib- ...

  10. Python正则提取数据单引号内数据,并判断是否是空列表(是否提取到数据)

    #coding=utf- import re string1="asdfgh'355'dfsfas" string2="fafafasfasdfasdf" pa ...