>  以下内容是我在学习https://blog.csdn.net/mingxiaod/article/details/85938251 教程时遇到不懂的问题自己查询并理解的笔记,由于sklearn版本更迭改动了原作者的代码,如有理解偏差欢迎指正。

 1. np.linspace  

    np.linspace(1,10) 在numpy中生成一个等差数列,可以加三个参数,np.linspace(1,10,10)在是两个参数时默认生成五十个数字的等差数列,第一第二哥数字分别代表数列的开头和结尾,如果是三哥参数,第三个参数代表等差数列的长度,既可以生成一个长度为10数字开头为1结尾为10的等差数列(1,2,3,4,5,6,7,8,9,10)

  2. plt.subplot(nrows, ncols, index, **kwargs)

    plt.subploy(2,3,5)这个代码的核心意思就是使用”整数来描述子图的位置信息“,顾名思义就是在一个画布中画多个图片,第一个参数nrows代表你把画布分为多少行,ncols代表你把画布分为多少列,index就更好理解了,它的意思就是接下来要画的图的索引位置,比如(2,3,5)他代表的意思就是把一张空白的画布分为两行,三列。六个位置区域,第三个索引参数一般就是从左上角开始到右下角依次编号(如下图),我查阅资料的时候有的博主强行机器翻译官方文档,并注明第三个参数不能大于10,其实不然,官方的意思是index<= nrows*ncols,也就是索引数字不能大于已有的画布分割数量。还有就是(2,3,5)与(235)效果等同,至于第三个参数**kwargs,作用是设置子图类型,极点图或线型图。

  3.np.delete(x_data,abnormal_data,axis = 0)

    第一个参数代表要处理的数据矩阵,第二个参数代表在什么位置处理(一般为一维数组),第三个参数 0 代表删除所在列,1代表删除所在行。

 1 from sklearn import preprocessing
2 from sklearn.datasets import load_boston
3 from sklearn.metrics import r2_score
4 from sklearn.linear_model import LinearRegression
5 from sklearn.model_selection import train_test_split
6 import matplotlib.pyplot as plt
7 import numpy as np
8
9 #数据初始化
10 dataset = load_boston()
11 x_data,y_data=load_boston(return_X_y = True) #导入数据,x_data为特征变量、y_data为目标值
12 print("--------------'''获取自变量数据的形状'''--------------")
13 print(x_data.shape)
14 print(y_data.shape)
15 name_data = dataset.feature_names #导入特证名
16
17 #数据可视化
18 for i in range(len(name_data)):
19 plt.scatter(x_data[:,i],y_data,s = 20,marker = '<',c = 'r')
20 plt.title(name_data[i])
21 plt.show()
22 #处理异常数据
23 abnormal_data = []
24 for i in range(len(y_data)):
25 if y_data[i] == 50:
26 abnormal_data.append(i)#存储异常值的下标;
27 x_data = np.delete(x_data,abnormal_data,axis = 0)#删除值为y值为50的特征变量所在行
28 y_data = np.delete(y_data,abnormal_data,axis = 0)#删除值为y值为50的特征值所在行
29 print("------检测-------")
30 print(x_data.shape)
31 print(y_data.shape)
32
33 abnormal_title = []
34 for i in range(len(name_data)):
35 if name_data[i] == 'RM' or name_data[i] =='PTRATIO'or name_data[i] == 'LSTAT':
36 continue
37 else:
38 abnormal_title.append(i)#存储不相关数据特证名下标
39 x_data = np.delete(x_data,abnormal_title,axis = 1)#删除不相关数据所在列
40 print("--------------'''输出有效数据形状'''--------------")
41 print(x_data.shape)
42 print(y_data.shape)
43
44 #数据分割
45 x_train,x_test = train_test_split(x_data,test_size=0.2,random_state=0)
46 y_train,y_test = train_test_split(y_data,test_size=0.2,random_state=0)
47 print("--------------'''输出实验数据长度'''--------------")
48 print(len(x_train))
49 print(len(x_test))
50 print(len(y_train))
51 print(len(y_test))
52
53 #数据归一化(无量纲化处理β=(x-min(x))/max(x)-min(x),将数据归集到0~1之间)
54 min_max_scaler = preprocessing.MinMaxScaler()
55 x_test = min_max_scaler.fit_transform(x_test)
56 x_train = min_max_scaler.fit_transform(x_train)
57 y_train = min_max_scaler.fit_transform(y_train.reshape(-1,1))
58 y_test = min_max_scaler.fit_transform(y_test.reshape(-1,1))#转化为一列行自动确认
59 #模型训练和评估
60 lr = LinearRegression()
61 lr.fit(x_train,y_train)
62 lr_y_predict = lr.predict(x_test)
63 #使用r2_score预测样本
64 score = r2_score(y_test, lr_y_predict)
65 print("样本预测得分:{}".format(score))

输出结果:

--------------'''获取自变量数据的形状'''--------------
(506, 13)
(506,)
------检测-------
(490, 13)
(490,)
--------------'''输出有效数据形状'''--------------
(490, 3)
(490,)
--------------'''输出实验数据长度'''--------------
392
98
392
98
样本预测得分:0.7091901425426

基于sklearn的波士顿房价预测_线性回归学习笔记的更多相关文章

  1. 机器学习实战二:波士顿房价预测 Boston Housing

    波士顿房价预测 Boston housing 这是一个波士顿房价预测的一个实战,上一次的Titantic是生存预测,其实本质上是一个分类问题,就是根据数据分为1或为0,这次的波士顿房价预测更像是预测一 ...

  2. 波士顿房价预测 - 最简单入门机器学习 - Jupyter

    机器学习入门项目分享 - 波士顿房价预测 该分享源于Udacity机器学习进阶中的一个mini作业项目,用于入门非常合适,刨除了繁琐的部分,保留了最关键.基本的步骤,能够对机器学习基本流程有一个最清晰 ...

  3. 使用sklearn进行数据挖掘-房价预测(5)—训练模型

    使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预 ...

  4. 使用sklearn进行数据挖掘-房价预测(4)—数据预处理

    在使用机器算法之前,我们先把数据做下预处理,先把特征和标签拆分出来 housing = strat_train_set.drop("median_house_value",axis ...

  5. 使用sklearn进行数据挖掘-房价预测(6)—模型调优

    通过上一节的探索,我们会得到几个相对比较满意的模型,本节我们就对模型进行调优 网格搜索 列举出参数组合,直到找到比较满意的参数组合,这是一种调优方法,当然如果手动选择并一一进行实验这是一个十分繁琐的工 ...

  6. 使用sklearn进行数据挖掘-房价预测(1)

    使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预 ...

  7. 使用sklearn进行数据挖掘-房价预测(2)—划分测试集

    使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预 ...

  8. 使用sklearn进行数据挖掘-房价预测(3)—绘制数据的分布

    使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预 ...

  9. Tensorflow之多元线性回归问题(以波士顿房价预测为例)

    一.根据波士顿房价信息进行预测,多元线性回归+特征数据归一化 #读取数据 %matplotlib notebook import tensorflow as tf import matplotlib. ...

随机推荐

  1. what's the print number means after called the setTimeout function in Chrome console?

    what's the print number means after called the setTimeout function in Chrome console? javascript fun ...

  2. macOS 显示/隐藏 AirPlay

    macOS 显示/隐藏 AirPlay AirPlay Sidecar 必须用相同的 Apple ID 登录 mac 和 ipad, 才能使用! https://www.apple.com/macos ...

  3. 为什么10月上线的NGK Global即将燎原资本市场

    近日据社区透露,NGK Global将在10月全面启动,数据公开透明,人人可以参与运营监管. 现在,区块链经济已经处于爆发前夜.金融行业的探索领先一筹,而其他行业的应用正在快速展开.区块链行业应用头部 ...

  4. 04_Mysql配置文件(重要参数)

    Mysql配置文件(重要参数) mysql配置文件的内容 打开my.ini文件(ProgramData默认隐藏,需取消隐藏) 绿色文字为注解,并不会被加载执行 删除注解,只保留重要有用的

  5. WPF 如何修改button圆角(经典)

    本人想设置Button为圆角,奈何搜索百度,找到的全是坑爹答案,现总结如下: 1. 需要添加button 的template. 2. 设置border的时候,必须要设置background, 否则会提 ...

  6. vue项目配置 `webpack-obfuscator` 进行代码加密混淆

    背景 公司代码提供给第三方使用,为了不完全泄露源码,需要对给出的代码进行加密混淆,前端代码虽然无法做到完全加密混淆,但是通过使用 webpack-obfuscator 通过增加随机废代码段.字符编码转 ...

  7. matlab load函数用法 实例

    一 语法: load(filename) load(filename,variables) load(filename,'-ascii') load(filename,'-mat') load(fil ...

  8. oracle 19c 导入 12c ORA-39002 ORA-39358

    直接用19c导出的dmp文件导入到12c,报错: ORA-39002: invalid operation ORA-39358: Export dump file version 19.0.0.0.0 ...

  9. 从HashMap面试聊聊互联网内卷

    微信公众号:大黄奔跑 关注我,可了解更多有趣的面试相关问题. 写在之前 毫无疑问,回想2020年有什么词出现在眼前最多的,无疑是"996"和"内卷",从马老师的 ...

  10. Hyperf-JsonRpc使用

    Hyperf-JsonRpc使用 标签(空格分隔): php 安装扩展包 composer require hyperf/json-rpc composer require hyperf/rpc-se ...