算法进阶 (LIS变形) 固定长度截取求最长不下降子序列【动态规划】【树状数组】
先学习下LIS最长上升子序列
看了大佬的文章OTZ:最长上升子序列 (LIS) 详解+例题模板 (全),其中包含普通O(n)算法*和以LIS长度及末尾元素成立数组的普通O(nlogn)算法,当然还有本文涉及的树状数组维护后的O(nlogn)算法*。
再贴一个容易理解的树状数组算法:https://www.cnblogs.com/war1111/p/7682228.html
再看看这道题
原题链接:http://acm.hnucm.edu.cn/JudgeOnline/problem.php?id=1373
题目描述
给定一个序列 a,求去除 a 中一段连续长度为 L 的序列后,a 的最长不下降子序列的长度的最大值。
输入
单组数据。
第一行两个整数 n,L 表示序列的长度为 n,L 如题意所示。
第二行 n 个数表示序列 a
n ≤ 105, 0 ≤ L ≤ n
输出
输出一个整数表示最长不下降子序列长度的最大值
样例输入
6 3
2 1 3 6 4 5
样例输出
3
思路:假设数组 dp[i] 为 以 a[i] 结尾的LIS
dn[i] 为 以 a[i] 结尾并截取 l 长度后的最优LIS
状态转移:
1、首先应该想到在 i < L 时 dn[i] = 0;
2、其次考虑 i>=L
① 截取的 l 长度为 a[i-L] ~ a[i-1] 时,只需考虑把 a[i] 加在 a[1] ~ a[i-L-1] 后面,即满足条件的 dp[1] ~ dp[i-L-1] 中的最大值。 dn[i] = max { dp[j]+1 } (1 <= j < i - L , A[j] < A[i] )
② 截取的 l 长度在 ①条件 之前,那么这个时候是不是可以在 dn 数组本身去找,因为前面的dn就是截取后的呀,即满足条件的 dn[1] ~ dn[i-1]中的最大值。 dn[i] = max { dn[j]+1 } (1 <= j < i , A[j] < A[i] )
最后 ans 就是 dni中的最大值 <截取在 i 之前> 以及 dpi中最大<截取在 i 之后>。
dp思路类似于 蓝桥杯——最大的算式
代码实现
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn = 1e5;
int a[maxn+5],dp[maxn+5],dn[maxn+5];
int main()
{
int n,k,ans=0;
scanf("%d%d",&n,&k);
for(int i=0; i<n; i++){
scanf("%d",&a[i]);
}
//求 dp[i] , O(n^2)
for(int i=0; i<n; i++){
dp[i] = 1;
for(int j=0; j<i; j++){
if(a[i] >= a[j]){
dp[i] = max(dp[i],dp[j]+1);
}
}
}
//求dn[i]
for(int i=0; i<n; i++){
dn[i] = 0;
if(i>=k){
for(int j=0; j<i-k; j++)
if(a[i] >= a[j])
dn[i] = max(dn[i],dp[j]+1);
for(int j=k; j<i; j++){
if(a[i] >= a[j]){
dn[i] = max(dn[i],dn[j]+1);
}
}
ans = max(ans, dn[i]);
}
}
printf("%d\n",ans);
return 0;
}
相信思路应该很清晰吧,对于之前做 dp 都是读完题万年懵,一看题解知天下,这道题当时能把状态转移搞清楚真的很有成就感,BUT 超时超时超时!!!
其实思路不变,按照LIS树状数组思路去做,对应的 dn[i] 也开一个对应的树状数组存储,用到了离散化,当输入值比较大则会超出树状数组范围,但是输入数量一定,就按照输入值的大小顺序及关系(大于,小于,等于)重新赋值覆盖输入值。
在hnucm平台上这道题提交了20多次测试,感谢不杀之恩orz:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+10;
int t[2][maxn],dp[maxn],dn[maxn],n,L,ans=0;
struct Node {int val,num;} a[maxn];
bool cmp(Node a,Node b){
return a.val<b.val;
}
bool cmp1(Node a,Node b){
return a.num<b.num;
}
// T[x] 表示目前以数值 x 结尾的最大长度;t[0][x]对应dp[i]的树状数组,t[1][x]对应dn[i]的树状数组
int query(int p,int x){
int cnt = 0;
while(x) cnt=max(cnt,t[p][x]), x-=x&-x;
return cnt;
}
int update(int p,int x,int m){
while(x<=n) t[p][x]=max(t[p][x],m), x+=x&-x;
}
int main()
{
scanf("%d%d",&n,&L);
for(int i=1;i<=n;i++){
scanf("%d",&a[i].val);
a[i].num = i;
}
sort(a+1,a+1+n,cmp);
a[1].val = 1;
for(int i=2,k=1;i<=n;i++){
if(a[i].val==a[i-1].val) a[i].val = k;
else a[i].val = ++k;
}
sort(a+1,a+1+n,cmp1);
for(int i=1; i<=n; i++){
dp[i] = query(0,a[i].val) +1; //每次遍历的时候用 dp[i] 去查询更新当前的 T[a[i]]
update(0,a[i].val,dp[i]);
if(i>L){
dn[i] = query(1,a[i].val) +1;
update(1,a[i].val,dn[i]); //在已截取的基础上寻找LIS
update(1,a[i-L].val,dp[i-L]); //截取当前元素的前L个
ans = max(ans,dn[i]);
}
}
for(int i=1;i<=n-L;i++){ //如果截取的L在最优LIS后面,取出来没有截取的就行
ans=max(ans,dp[i]);
}
printf("%d\n",ans);
return 0;
}
算法进阶 (LIS变形) 固定长度截取求最长不下降子序列【动态规划】【树状数组】的更多相关文章
- P1020 导弹拦截(nlogn求最长不下降子序列)
题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹 ...
- JDOJ 1946 求最长不下降子序列个数
Description 设有一个整数的序列:b1,b2,…,bn,对于下标i1<i2<…<im,若有bi1≤bi2≤…≤bim 则称存在一个长度为m的不下降序列. 现在有n个数,请你 ...
- HDU 6357.Hills And Valleys-字符串非严格递增子序列(LIS最长非下降子序列)+动态规划(区间翻转l,r找最长非递减子序列),好题哇 (2018 Multi-University Training Contest 5 1008)
6357. Hills And Valleys 自己感觉这是个好题,应该是经典题目,所以半路选手补了这道字符串的动态规划题目. 题意就是给你一个串,翻转任意区间一次,求最长的非下降子序列. 一看题面写 ...
- BZOJ2124: 等差子序列(树状数组&hash -> bitset 求是否存在长度为3的等差数列)
2124: 等差子序列 Time Limit: 3 Sec Memory Limit: 259 MBSubmit: 2354 Solved: 826[Submit][Status][Discuss ...
- 求最长不下降子序列(nlogn)
最长递增子序列问题:在一列数中寻找一些数,这些数满足:任意两个数a[i]和a[j],若i<j,必有a[i]<a[j],这样最长的子序列称为最长递增子序列. 设dp[i]表示以i为结尾的最长 ...
- Monkey and Banana(dp,求最长的下降子序列)
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a bana ...
- [noip科普]关于LIS和一类可以用树状数组优化的DP
预备知识 DP(Dynamic Programming):一种以无后效性的状态转移为基础的算法,我们可以将其不严谨地先理解为递推.例如斐波那契数列的递推求法可以不严谨地认为是DP.当然DP的状态也可以 ...
- 最长不下降子序列的O(n^2)算法和O(nlogn)算法
一.简单的O(n^2)的算法 很容易想到用动态规划做.设lis[]用于保存第1~i元素元素中最长不下降序列的长度,则lis[i]=max(lis[j])+1,且num[i]>num[j],i&g ...
- 【转】关于LIS和一类可以用树状数组优化的DP 预备知识
原文链接 http://www.cnblogs.com/liu-runda/p/6193690.html 预备知识 DP(Dynamic Programming):一种以无后效性的状态转移为基础的算法 ...
随机推荐
- Codeforces 1324F Maximum White Subtree DFS
题意 给你无根一颗树,每个节点是黑色或白色.对于每一个节点,问包含该节点的权值最大的子树. 子树的权值等于子树中白点的个数减去黑点的个数. 注意,这里的子树指的是树的联通子图. 解题思路 这场就这题卡 ...
- Java数组实现随机生成N-M之间不重复的随机数
接收一个整形数组,使用Math.Random每次在规定的数字范围内随机产生数字,然后嵌套for循环依次判断是否有重复值,如果有既外循环变量减一,直到把数组装满为止. /** * 随机生成 N--M的不 ...
- Git 不能提交空目录?我也是醉了!
Git 不能提交空目录?我也是醉了! 背景 最近在提交文件时,因为是空的 Maven 项目结构,发现 Git 空目录死活不能提交,还以为是我自己在 .gitignore 文件中忽略了,在网上查了下,原 ...
- random模块的应用
- 程序员你是如何降低NPE的?
程序员,如果系统突然报了一个空指针异常,你肯定像吞了一只苍蝇一样尴尬. 那么如何在日常开发过程中降低NPE? 问题 回答 现状 返回空值会出现大量的空指针异常 目的 改进方法的返回值,降低出现空指针异 ...
- vue项目中使用ts(typescript)入门教程
最近项目需要将原vue项目结合ts的使用进行改造,这个后面应该是中大型项目的发展趋势,看到一篇不错的入门教程,结合它并进行了一点拓展记录之.本文从安装到vue组件编写进行了说明,适合入门. 1.引入T ...
- archaius(2) 配置源
上一节讲到,archaius实现动态配置的核心就是定时去配置中心拉去配置内容,接下来几接就来看一下archaius内部具体是如何实现的. 首先我们来了解一下配置源,什么是配置源呢,archaius内部 ...
- CRM、用户管理权限
CRM目录结构 from django.shortcuts import HttpResponse,render,redirect from django.conf.urls import url f ...
- Jackson精解第4篇-@JacksonInject与@JsonAlias注解
Jackson是Spring Boot(SpringBoot)默认的JSON数据处理框架,但是其并不依赖于任何的Spring 库.有的小伙伴以为Jackson只能在Spring框架内使用,其实不是的, ...
- jstl中ftm标签用法
<fmt:formatDate value="${dateTime}" pattern="yyyy/MM/dd HH:mm:ss"/>