题解-TJOI2015 弦论
字符串 \(s\) 和 \(t\) 和 \(k\)。如果 \(t=0\),不同位置的相同子串算 \(1\) 个;如果 \(t=1\),不同位置的相同子串算多个。求 \(k\) 小子串,如果不存在输出 \(-1\)。
数据范围:\(1\le n\le 5\cdot 10^5\),\(t\in\{0,1\}\),\(1\le k\le 10^9\)。
这题还是很经典的,对理解后缀自动机 \(\tt SAM\) 很有帮助。以前我做过这题(并写了题解),现在复习后缀自动机的时候又做了一次,感悟颇多,遂记之。
首先后缀自动机的节点表示的是一个 \(\bf Endpos\) 集以及该集对应的子串(不一定是后缀)。
一个节点 \(i\) 对应的子串长度范围为 \([len_{fa_i}+1,len_i]\),即对应子串种数为 \(len_i-len_{fa_i}\)。
同时对应每种子串的数量均为 \(|{\bf Endpos}_i|\) 个。
先看处理这些种数、数量等奇奇怪怪的东西的代码(\(dep\) 即 \(len\)):
void run(int t){
for(int i=1;i<=cnt;i++) c[dep[i]]++;
for(int i=1;i<=cnt;i++) c[i]+=c[i-1];
for(int i=1;i<=cnt;i++) q[c[dep[i]]--]=i;
for(int i=cnt;i>=1;i--) sz[fa[q[i]]]+=sz[q[i]]; //①
for(int i=1;i<=cnt;i++) sm[i]=t?sz[i]:(sz[i]=1); //②
sz[1]=sm[1]=0;
for(int i=cnt;i>=1;i--)
for(int c=0;c<26;c++) sm[q[i]]+=sm[ch[q[i]][c]]; //③
}
这个 \(q\) 数组是对后缀自动机节点按 \(len\) 排序(\(len_i>len_{fa_i}\))。
①:求出 \(sz_i=|{\bf Endpos}_i|\)。
②:按照题目要求处理。
③:处理子自动机子串数量和 \(sm_i\),一个 \(|{\bf Endpos}_i|\) 被算 \(len_i-len_{fa_i}\) 次。
至于输出 \(k\) 大子串,一个 \(\tt Dfs\) 的问题。
void Print(int p,int k){
if(k<=sz[p]) return;
k-=sz[p];
for(int c=0;c<26;c++)if(ch[p][c]){
if(k>sm[ch[p][c]]) k-=sm[ch[p][c]];
else return void((putchar(c+'a'),Print(ch[p][c],k)));
}
}
- 代码
#include <bits/stdc++.h>
using namespace std;
//Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair(a,b)
#define x first
#define y second
#define b(a) a.begin()
#define e(a) a.end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
//Data
const int N=5e5;
int n;
char s[N+7];
//SuffuxAutomaton
const int T=N<<1;
int en=1,cnt=1,ch[T+7][26],fa[T+7],dep[T+7]; //dep即len
ll sz[T+7],sm[T+7];
void insert(int c){
int p=en,np=en=++cnt;
dep[np]=dep[p]+1;
for(;p&&!ch[p][c];p=fa[p]) ch[p][c]=np;
if(!p) fa[np]=1;
else {
int q=ch[p][c];
if(dep[q]==dep[p]+1) fa[np]=q;
else {
int nq=++cnt;
dep[nq]=dep[p]+1;
memcpy(ch[nq],ch[q],sizeof ch[q]);
fa[nq]=fa[q],fa[q]=fa[np]=nq;
for(;ch[p][c]==q;p=fa[p]) ch[p][c]=nq;
}
}
sz[np]=1;
}
int c[T+7],q[T+7];
void run(int t){
for(int i=1;i<=cnt;i++) c[dep[i]]++;
for(int i=1;i<=cnt;i++) c[i]+=c[i-1];
for(int i=1;i<=cnt;i++) q[c[dep[i]]--]=i;
for(int i=cnt;i>=1;i--) sz[fa[q[i]]]+=sz[q[i]];
for(int i=1;i<=cnt;i++) sm[i]=t?sz[i]:(sz[i]=1);
sz[1]=sm[1]=0;
for(int i=cnt;i>=1;i--)
for(int c=0;c<26;c++) sm[q[i]]+=sm[ch[q[i]][c]];
}
void Print(int p,int k){
if(k<=sz[p]) return;
k-=sz[p];
for(int c=0;c<26;c++)if(ch[p][c]){
if(k>sm[ch[p][c]]) k-=sm[ch[p][c]];
else return void((putchar(c+'a'),Print(ch[p][c],k)));
}
}
//Main
int main(){
int t,k; scanf("%s%d%d",&s[1],&t,&k),n=strlen(&s[1]);
for(int i=1;i<=n;i++) insert(s[i]-'a');
run(t);
if(sm[1]>=k) Print(1,k); else puts("-1");
return 0;
}
祝大家学习愉快!
题解-TJOI2015 弦论的更多相关文章
- 【BZOJ3998】[TJOI2015]弦论 后缀自动机
[BZOJ3998][TJOI2015]弦论 Description 对于一个给定长度为N的字符串,求它的第K小子串是什么. Input 第一行是一个仅由小写英文字母构成的字符串S 第二行为两个整数T ...
- bzoj3998: [TJOI2015]弦论(SAM+dfs)
3998: [TJOI2015]弦论 题目:传送门 题解: SAM的入门题目(很好的复习了SAM并加强Right集合的使用) 其实对于第K小的字符串直接从root开始一通DFS就好,因为son边是直接 ...
- BZOJ 3998: [TJOI2015]弦论 [后缀自动机 DP]
3998: [TJOI2015]弦论 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2152 Solved: 716[Submit][Status] ...
- Luogu P3975 [TJOI2015]弦论
题目链接 \(Click\) \(Here\) 题目大意: 重复子串不算的第\(k\)大子串 重复子串计入的第\(k\)大子串 写法:后缀自动机. 和\(OI\) \(Wiki\)上介绍的写法不太一样 ...
- 洛谷 P3975 [TJOI2015]弦论 解题报告
P3975 [TJOI2015]弦论 题目描述 为了提高智商,ZJY开始学习弦论.这一天,她在<String theory>中看到了这样一道问题:对于一个给定的长度为\(n\)的字符串,求 ...
- 【BZOJ 3998】 3998: [TJOI2015]弦论 (SAM )
3998: [TJOI2015]弦论 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2627 Solved: 881 Description 对于一 ...
- BZOJ_3998_[TJOI2015]弦论_后缀自动机
BZOJ_3998_[TJOI2015]弦论_后缀自动机 Description 对于一个给定长度为N的字符串,求它的第K小子串是什么. Input 第一行是一个仅由小写英文字母构成的字符串S 第二行 ...
- luogu P3975 [TJOI2015]弦论 SAM
luogu P3975 [TJOI2015]弦论 链接 bzoj 思路 建出sam. 子串算多个的,统计preant tree的子树大小,否则就是大小为1 然后再统计sam的节点能走到多少串. 然后就 ...
- LGOJ3975 TJOI2015 弦论
link:TJOI2015 弦论 题目大意: 给定一个字符串,输出在对该字符串所有的非空子串排序后第\(k\)个 另外的一个限制是\(T\):子串本质相同但位置不同算\(1\)或多个 \(|s| \l ...
随机推荐
- malloc/free与new/delete的区别(转)
相同点:都可用于申请动态内存和释放内存 不同点:(1)操作对象有所不同.malloc与free是C++/C 语言的标准库函数,new/delete 是C++的运算符.对于非内部数据类的对象而言,光用m ...
- if __name__ == "__main__"的疑惑
Python中if __name__ == "__main__"详细解释: 想必很多初次接触python都会见到这样一个语句,if __name__ == "__main ...
- LeetCode 中等题解(4)
40 组合总和 II Question 给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates ...
- vue在移动端使用alloyfinger手势库操作图片拖拽、缩放
最近开发一个活动需要在手机上给上传的头像加上边框.装饰,需要拖拽.手势缩放边框下的头像图片,因为是vue项目,开始尝试了vue-drag-resize这个组件,对图片拖拽支持很完美,但是无法手势缩放, ...
- ABBYY FineReader 15 对比文档功能
想必大家在办公的时候都有着要处理各种各样文档的烦恼,一个文档经过一个人或不同人的多次修订都是常有的事,拥有文档对比功能的软件也就应势而生.ABBYY FineReader 15 有许多能够帮助我们办公 ...
- 苹果电脑不支持ntfs磁盘怎么办?用这一招轻松搞定!
ntfs是一种Windows NT内核的系列操作系统所支持的磁盘格式.相较于fat文件格式,ntfs彻底解决存储容量限制,可支持16Exabytes(1018),同时,ntfs也拥有更强的稳定性及安全 ...
- 苹果电脑上folx下载器比迅雷还好用?
对于使用Mac电脑的小伙伴来说,除了迅雷以外,能够使用的下载工具非常少.小编也会经常被朋友问起,是否有好用的Mac下载工具推荐.小编都会毫不犹豫地推荐他们Folx,一款非常适用于Mac的下载工具.今天 ...
- 简单的 通过ID获取文件名称
模型中的方法class 模型名{ /** * 通过ID获取文件名称 */ public static function getNameById($id) { $model = self::findOn ...
- maven打包时报No compiler is provided in this environment处理
系统:macOS 开发工具:Idea 问题描述:在idea中执行mvn clean install时报No compiler is provided in this environment. Perh ...
- Java基础教程——接口
接口 接口只是一种约定.--Anders 接口定义了一种规范--多个类共同的公共行为规范. 对于接口的实现者--规定了必须向外提供哪些服务 对于接口的调用者--规定了可以调用哪些服务,如何调用这些服务 ...