Alice and Bob has found a island of treasure in byteland! They find N kinds of treasures on the island, and each kind of treasure has a certain number, and as in byteland, the value of each treasure will be a power
of 2, such as 1,2,4,8 ...

Now the only problem is how to divide treasures fairly, they need to divide the treasures into two parts, and the value of each part is the sum of all treasures' in this part, they want to make the difference between the value of two parts as small as possible,
can you help them?

Input

First line of the input is a single integer T(1 <= T <= 20), indicating there are T test cases.

For each test case, the first line contain one integer N(2 <= N <= 10^5), indicate the different kinds of treasures.

Then N line followed, each line will have follow two integer ai(0 <= ai <= 10^5) and xi(0 <= xi <= 10^9), indicate there are xi i-th treasures, and the value of each one is 2^ai.

Output

For each case, you should output a single line, first output "Case #t: ", where t indicating the case number between 1 and T, then a string with only '0' and '1' followed, indicate the minimum difference in binary
representation, find more details in samples.

Sample Input

3

2

0 2

2 1

4

0 1

1 1

2 1

3 1

4

0 2

1 1

2 1

3 1

Sample Output

Case #1: 10

Case #2: 1

Case #3: 0

这题是道二进制想法题,给你n种2^a[i]次,num[i]件的物品,问你怎样分配为两堆物品能使两堆的差值最小。这里我们可以把读入的每件物品都用二进制储存起来,用num[i]表示二进制第i位上的数,用jinwei[i]表示这一位是否由前一位进位得到。

然后从高位到低位循环,直到没有进位的且为1的那位退出,那么最小的差值即为当前的位数所表示的数减去其低位加起来的总数。为什么这样是对的呢,因为如果是0或者2,那么一定可以平分,如果是1,且是由进位得到的,那么这个进位可以表示为2个较低位的数。而且2^i>2^(i-1)+2^(i-2)+2^(i-3)+...+2^0,所以这样差值一定是最小的。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define ll long long
#define inf 0x7fffffff
#define maxn 106000
struct node{
ll num,v;
}a[maxn],b[maxn]; ll jinwei[maxn],num[maxn],ans[maxn]; int main()
{
ll n,m,i,j,T,tot,cnt,cas=0;
scanf("%lld",&T);
while(T--)
{
memset(num,0,sizeof(num));
memset(jinwei,0,sizeof(jinwei));
memset(ans,0,sizeof(ans));
scanf("%lld",&n);
for(i=1;i<=n;i++){
scanf("%lld%lld",&a[i].v,&a[i].num);
num[a[i].v+1]+=a[i].num;
}
tot=0;
for(i=1;i<=105000;i++){
if(num[i]==0)continue;
if(num[i]==1){
tot=i;continue;
}
tot=i;
if(num[i]%2==0){
num[i+1]+=num[i]/2;jinwei[i+1]=1;
num[i]=0;
}
else{
num[i+1]+=num[i]/2;jinwei[i+1]=1;
num[i]=1;
}
}
j=10000000000;
for(i=tot;i>=1;i--){
if(num[i]==0)continue;
if(num[i]==1){
if(jinwei[i]==1)continue;
else{
j=i;break;
}
}
}
if(j==10000000000){
cas++;
printf("Case #%lld: 0\n",cas);continue;
}
if(j==1){
cas++;
printf("Case #%lld: 1\n",cas);continue;
}
for(i=j-1;i>=1;i--){
ans[i]=1-num[i];
}
ans[1]++;
tot=0;
for(i=1;i<=105000;i++){
if(ans[i]==0)continue;
if(ans[i]==1){
tot=i;continue;
}
tot=i;
if(ans[i]%2==0){
ans[i+1]+=ans[i]/2;
ans[i]=0;
}
else{
ans[i+1]+=ans[i]/2;
ans[i]=1;
}
}
cas++;
printf("Case #%lld: ",cas);
for(i=tot;i>=1;i--){
printf("%lld",ans[i]);
}
printf("\n");
}
return 0;
}

bnuoj24252 Divide的更多相关文章

  1. [LeetCode] Divide Two Integers 两数相除

    Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...

  2. Pairwise Sum and Divide 51nod

      1305 Pairwise Sum and Divide 题目来源: HackerRank 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题  收藏  关注 有这样 ...

  3. Conquer and Divide经典例子之Strassen算法解决大型矩阵的相乘

    在通过汉诺塔问题理解递归的精髓中我讲解了怎么把一个复杂的问题一步步recursively划分了成简单显而易见的小问题.其实这个解决问题的思路就是算法中常用的divide and conquer, 这篇 ...

  4. UVA - 10375 Choose and divide[唯一分解定理]

    UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  5. [leetcode] 29. divide two integers

    这道题目一直不会做,因为要考虑的corner case 太多. 1. divisor equals 0. 2. dividend equals 0. 3. Is the result negative ...

  6. Leetcode Divide Two Integers

    Divide two integers without using multiplication, division and mod operator. 不用乘.除.求余操作,返回两整数相除的结果,结 ...

  7. uva10375 Choose and Divide(唯一分解定理)

    uva10375 Choose and Divide(唯一分解定理) 题意: 已知C(m,n)=m! / (n!*(m-n!)),输入整数p,q,r,s(p>=q,r>=s,p,q,r,s ...

  8. 51nod1305 Pairwise Sum and Divide

    题目链接:51nod 1305 Pairwise Sum and Divide 看完题我想都没想就直接暴力做了,AC后突然就反应过来了... Floor( (a+b)/(a*b) )=Floor( ( ...

  9. leetcode-【中等题】Divide Two Integers

    题目 Divide two integers without using multiplication, division and mod operator. If it is overflow, r ...

随机推荐

  1. NAS基础知识

    一.什么是NAS 1.NAS的定义 NAS(Network Attached Storage:网络附属存储)按字面简单说就是连接在网络上,具备资料存储功能的装置,因此也称为"网络存储器&qu ...

  2. k8s之ServiceAccount

    导读 上一篇说了k8s的RBAC授权模式,今天就来简单看一下其中涉及到的ServiceAccount. 简介 k8s创建两套独立的账号系统,原因如下: (1)User账号给用户用,Service Ac ...

  3. mysql: Character set 'utf8mb4' is not a compiled character set and is not specified in the '/usr/share/mysql/charsets/Index.xml' file

    mysql: Character set 'utf8mb4' is not a compiled character set and is not specified in the '/usr/sha ...

  4. 【葵花宝典】一天掌握Kubernetes

    1.kubernetes介绍 kubernetes,简称K8s,是用8代替8个字符"ubernete"而成的缩写.是一个开源的,用于管理云平台中多个主机上的容器化的应用,Kuber ...

  5. 到底什么是哈希Hash?

    有次面试被问到这个问题? 我说是经过运算的一串字符串,这个回答显然是让人不满意,连自己都不满意! 但是又对其很模糊,那么到底什么是Hash呢? 定义 Hash一般翻译为散列,还有音译为哈希,本文我们统 ...

  6. 与数论的厮守05:gcd(a,b)=gcd(b,a mod b)的证明

    \[设c=gcd(a,b),那么a可以表示为mc,b可以表示为nc的形式.然后令a=kb+r,那么我们就\\ 只需要证明gcd(b,r)=c即可.{\because}r=a-kb=mc-knc,{\t ...

  7. 阿里云OSS对象存储服务(一)

    一.开通"对象存储OSS"服务 申请阿里云账号 实名认证 开通"对象存储OSS"服务 进入管理控制台 二.控制台使用 1.创建Bucket 命名:guli-fi ...

  8. mysqlG基于TID模式同步报错 (Last_IO_Errno: 1236)

    mysqlG基于TID模式同步报错Last_IO_Errno: 1236 Last_IO_Error: Got fatal error 1236 from master when reading da ...

  9. canvas性能-drawImage渲染图片

    canvas性能-绘制图片 目录 canvas性能-绘制图片 canvas绘制图片 drawImage putImageData createPattern 测试绘制耗时 drawImage Imag ...

  10. Linux、JDK、Netty中的NIO与零拷贝

    一.先理解内核空间与用户空间 Linux 按照特权等级,把进程的运行空间分为内核空间和用户空间,分别对应着下图中, CPU 特权等级分为4个,Linux 使用 Ring 0 和 Ring 3. 内核空 ...