一、为什么需要 ANALYZE

首先介绍下 RBO 和 CBO,这是数据库引擎在执行 SQL 语句时的2种不同的优化策略。

RBO(Rule-Based Optimizer)

基于规则的优化器,就是优化器在优化查询计划的时候,是根据预先设置好的规则进行的,这些规则无法灵活改变。举个例子,索引优先于扫描,这是一个规则,优化器在遇到所有可以利用索引的地方,都不会选择扫描。这在多数情况下是正确的,但也不完全如此:

比如 一张个人信息表中性别栏目加上索引,由于性别是只有2个值的枚举类,也就是常说的基数非常低的列,在这种列上使用索引往往效果还不如扫描

 
SELET count(*) FROM person WHERE gender = 'M';

  

因此 RBO 的优化方式是死板的,粗放的,目前已逐渐被 CBO 方式取代。

CBO(Cost Based Optimizer)

基于代价的优化器,就是优化器在优化查询计划的时候,是根据动态计算出来的 Cost(代价)来判断如何进行选择。那如何计算代价呢?这里一般是基于代价模型和统计信息,代价模型是否合理,统计信息是否准确都会影响优化的效果。

还是拿上面员工性别统计为例,在 CBO 的优化方式下,物理计划就不会选择走索引。当然上面的例子比较简单,在 Greenplum 运行的复杂 SQL 中,优化器最核心的还是在 scan 和 join 的各种实现方式中做出选择,这才是能大幅提升性能的关键点。

前面提到 CBO 需要一个代价模型和统计信息,代价模型和规则一样,需要预先设置好,那统计信息是如何收集的?多数基于 CBO 优化的计算引擎,包括 Greenplum,Oracle,Hive,Spark 等都类似,除了可以按一定规则自动收集统计信息外,还都支持手动输入命令进行收集,通常这个命令都叫 ANALYZE。

结论:由于 CBO 优化的需求,因此我们需要使用 ANALYZE 命令去收集统计信息。

二、ANALYZE 怎么使用

说明

ANALYZE 是 Greenplum 提供的收集统计信息的命令。

ANALYZE 支持三种粒度,列,表,库,如下:

CREATE TABLE foo (id int NOT NULL, bar text NOT NULL) DISTRIBUTED BY (id); // 创建测试表fooANALYZE foo(bar); // 只搜集bar列的统计信息ANALYZE foo; // 搜集foo表的统计信息ANALYZE; // 搜集当前库所有表的统计信息,需要有权限才行

 

限制

ANALYZE 会给目标表加 SHARE UPDATE EXCLUSIVE 锁,也就是与 UPDATE,DELETE,还有 DDL 语句冲突。

速度

ANALYZE 是一种采样统计算法,通常不会扫描表中所有的数据,但是对于大表,也仍会消耗一定的时间和计算资源。

采样统计会有精度的问题,因此 Greenplum 也提供了一个参数 default_statistics_target,调整采样的比例。简单说来,这个值设置得越大,采样的数量就越多,准确性就越高,但是消耗的时间和资源也越多。

default_statistics_target.png

直接修改服务器的参数会影响整个集群,通常不建议这样操作。如果确实有需要,可以尝试只修改某列的对应参数,如下:

 
ALTER TABLE {table_name} ALTER COLUMN {col_name} SET STATISTICS {-1|0-1000};

  

时机

根据上文所述,ANALYZE 会加锁并且也会消耗系统资源,因此运行命令需要选择合适的时机尽可能少的运行。根据 Greenplum 官网建议,以下3种情况发生后建议运行 ANALYZE

  • 批量加载数据后,比如 COPY

  • 创建索引之后

  • INSERT, UPDATE, and DELETE 大量数据之后

自动化

除了手动运行,ANALYZE 也可以自动化。实际上默认情况下,我们对空表写入数据后, Greenplum 也会自动帮我们收集统计信息,不过之后在写入数据,就需要手动操作了。

有2个参数可以用来调整自动化收集的时机,gp_autostats_mode 和 gp_autostats_on_change_threshold。gp_autostats_mode 默认是 on_no_stats,也就是如果表还没有统计信息,这时候写入数据会导致自动收集,这之后,无论表数据变化多大,都只能手动收集了。如果将 gp_autostats_mode 修改为 on_change ,就是在数据变化量达到 gp_autostats_on_change_threshold 参数配置的量之后,系统就会自动收集统计信息。

分区表

Greenplum 官网对于分区表的 ANALYZE 专门进行了讲解,其实只要保持默认值,不去修改系统参数 optimizer_analyze_root_partition,那么对于分区表的操作并没有什么不同,直接在 root 表上进行 ANALYZE 即可,系统会自动把所有叶子节点的分区表的统计信息都收集起来。

如果分区表的数目很多,那在 root 表上进行 ANALYZE 可能会非常耗时,通常的分区表都是带有时间维度的,历史的分区表并不会修改,因此单独 ANALYZE 数据发生变化的分区,是更好的实践。

三、统计信息去了哪里

pg_class

表的大小是统计信息里面最直观,也几乎是最重要的,这个信息是放在 pg_catalog.pg_class 系统表中,reltuples 代表元组数(行数),relpages 代表实际占用的 page 数目(Greenplum中一个 page 为32KB)。

需要注意以下3点

1. reltuples 不是准确值,获取表的准确行数还是需要 count。

2. reltuples 和 relpages 需要通过 ANALYZE 进行收集,对于已有数据的表,系统不会自动更新。

3. reltuples 和 relpages 不一定能对齐,比如条数看起来不多的表,实际占用的 page 数目很大,这种一般是由于数据膨胀(bloat)造成,这时候需要 vacuum 等操作。

pg_statistic

关于列的统计信息都是存放在 pg_catalog.pg_statistic 系统表中。其中表的每一列(如果有统计)都会有一行对应的数据。了解并掌握 pg_statistic 的内容,对于深入理解查询优化非常重要。

列的统计信息内容很丰富,但是目的都是让优化器估算出,一个查询条件,能够过滤多少数据。

以下列举了 pg_statistic 的重要字段:

对于 stakindN 字段中的统计方式,这里选择3个最常见的进行说明:

1. STATISTIC_KIND_MCV

高频值,在一个列中出现最频繁的值。

高频值统计在很多场景下都有价值,这里举一个数据倾斜的 hash join 例子,如下代码:

/* * ExecHashBuildSkewHash * * Set up for skew optimization if we can identify the most common values * (MCVs) of the outer relation's join key. We make a skew hash bucket * for the hash value of each MCV, up to the number of slots allowed * based on available memory. */static voidExecHashBuildSkewHash(HashJoinTable hashtable, Hash *node, int mcvsToUse){....}

hash join 场景下,我们需要尽可能的把 inner table 构建在内存中,但内存资源是有限的,因此我们需要做出一些选择,什么内容优先放入内存中。如果外表有高频值,那我们可以考虑把高频值对应的内表信息优先放入到内存中,在实践中,Greenplum 是单独构建一个 skew hash table 与 main hash table 并存。

2. STATISTIC_KIND_HISTOGRAM

直方图,使用等频直方图来描述一个列中的数据的分布。

直方图主要用于数据分布不均匀的情况下,对按列过滤后能返回多少数据进行预估。

举个例子,一个有3种产品的订单表,商品 A 很热销,订单量在90%,商品 B 一般,订单量在9%,商品 C 只有1%,则该列的 NDV(Number of Distinct Value)值为3,如果一共有1000000条数据,在没有直方图统计的情况下,如果查询商品 C 的订单,优化器会预计要扫描1000000/3≈330000,因此可能选择全表 scan,如果含有直方图统计,优化器就知道实际上 C 商品可能就几千条数据,因此会选择走索引。当然这个例子很简单,实际情况会复杂很多。

3. STATISTIC_KIND_CORRELATION

相关系数,记录的是当前列未排序的数据分布和排序后的数据分布的相关性。

用于估算索引扫描代价的,统计值在-1到1,值越大,表示相关性越高,也就是使用索引扫描代价越低。

举个例子,初始化如下2张表

 
create table t_correlation_asc (id int, number int) DISTRIBUTED BY (id);INSERT INTO t_correlation_asc SELECT 1, i FROM generate_series(1, 1000) AS i; create table t_correlation_desc (id int, number int) DISTRIBUTED BY (id);INSERT INTO t_correlation_desc SELECT 1, 1001-i FROM generate_series(1, 1000) AS i;

  

在查看表对应的统计信息,可以看出在 number 列,你按升序写入1000个数,该列物理存储的数据实际上就是按升序排序的,反过来降序写入1000个数,由于顺序是相反的,所以相关性是-1

correlation.png

四、例子

以下将会构造一个大小表 join 的场景,来说明统计信息的收集对于查询计划的影响。

1. 初始化表结构和数据:

 
CREATE TABLE small_table (id int NOT NULL, bar text NOT NULL) DISTRIBUTED BY (id);INSERT INTO small_table SELECT i, 'test:' || i FROM generate_series(1, 10) AS i; CREATE TABLE big_table (id int NOT NULL, bar text NOT NULL) DISTRIBUTED BY (id);INSERT INTO big_table SELECT i, 'test:' || i FROM generate_series(1, 100000) AS i;

  

pg_class 中对应的数据如下:

small_table.png

big_table.png

2. 大小表 join

注意为了构造小表广播的场景,这里关联键需要选择非分布键。

explain1.png

3. 给小表插入数据

这里给小表插入数据后,小表的数据量超过大表

 
INSERT INTO small_table SELECT i, 'test:' || i FROM generate_series(1, 200000) AS i;

  

在没有 ANALYZE 的情况下,pg_class 中的数据没有发生变化,因此查询计划也没有发生变化。

4. 收集统计信息

运行 ANALYZE 收集小表的统计信息,如下:

new_small_table.png

在运行 join 语句,查询计划发生变化:

explain2.png

结论:查询优化器在收到新的统计信息之后,发现是2张数据量差不多的表进行 join,因此选择重分布而不是小表广播。


关注“腾讯云大数据”公众号,技术交流、最新活动、服务专享一站Get~

Greenplum 性能优化之路 --(三)ANALYZE的更多相关文章

  1. Greenplum 性能优化之路 --(二)存储格式

    一.存储格式介绍 Greenplum(以下简称 GP)有2种存储格式,Heap 表和 AO 表(AORO 表,AOCO 表). Heap 表:这种存储格式是从 PostgreSQL 继承而来的,目前是 ...

  2. Greenplum 性能优化之路 --(一)分区表

    一.什么是分区表 分区表就是将一个大表在物理上分割成若干小表,并且整个过程对用户是透明的,也就是用户的所有操作仍然是作用在大表上,不需要关心数据实际上落在哪张小表里面.Greenplum 中分区表的原 ...

  3. 阿里巴巴 web前端性能优化进阶路

    Web前端性能优化WPO,相信大多数前端同学都不会陌生,在各自所负责的站点页面中,也都会或多或少的有过一定的技术实践.可以说,这个领域并不缺乏成熟技术理论和技术牛人:例如Yahoo的web站点性能优化 ...

  4. 专访阿里巴巴研究员“赵海平”:Facebook的PHP底层性能优化之路(HipHop,HHVM)

    专访阿里巴巴研究员“赵海平”:Facebook的PHP底层性能优化之路 http://www.infoq.com/cn/articles/interview-alibaba-zhaohaiping

  5. PLSQL_性能优化系列16_Oracle Tuning Analyze优化分析

    2014-12-23 Created By BaoXinjian

  6. Android性能优化第(三)篇---MAT比Menmery Monitor更强大

    作者 LooperJing 2016.11.17 16:42* 字数 1687 阅读 1603评论 3喜欢 21 在Android性能优化第(一)篇---基本概念中讲了JAVA的四大引用,讲了一下GC ...

  7. 40+倍提升,详解 JuiceFS 元数据备份恢复性能优化之路

    JuiceFS 支持多种元数据存储引擎,且各引擎内部的数据管理格式各有不同.为了便于管理,JuiceFS 自 0.15.2 版本提供了 dump 命令允许将所有元数据以统一格式写入到 JSON 文件进 ...

  8. Android 开发性能优化之SparseArray(三)

    SparseArray是android里为<Interger,Object>这样的Hashmap而专门写的class,目的是提高效率,其核心是折半查找函数(binarySearch) pr ...

  9. 李洪强iOS开发之性能优化技巧

    李洪强iOS开发之性能优化技巧 通过静态 Analyze 工具,以及运行时 Profile 工具分析性能瓶颈,并进行性能优化.结合本人在开发中遇到的问题,可以从以下几个方面进行性能优化. 一.view ...

随机推荐

  1. SQL语句的学习

    SQL语句的学习 要交作业了,刚好把SQL查询语句的内容写成笔记,以后好查看.水一下 单表查询 DISTINCT:去掉结果中的重复行作用,将DISTINCT关键字放在select的后面.目标列名的前面 ...

  2. javascript九宫格碰撞检测

      JS九宫格碰撞检测这个东西 以前学过  这次主要是做面试项目web版的win10 桌面图片需要用碰撞检测 再写的时候竟然完全忘记了碰撞检测原理 和怎么写 综合来说还是写的太少  今天再学了一下 理 ...

  3. 如何使用Camtasia制作动态动画场景?

    也许在学习编辑视频的你知道Camtasia 2019(win系统),知道Camtasia的视频编辑功能,录制屏幕功能,但你可能想不到,Camtasia还可以制作动态动画场景.跟我一起学习一下吧! 一. ...

  4. 在Mac上也能轻松拥有Windows应用程序的简便方法

    一般而言,如果我们想要在Windows的环境下下载一款软件那是件很方便的事情.只要我们登陆软件的官网进行下载即可.但是如果我们使用的是Mac OS系统,很多用户就会发现,许多软件会出现不兼容的情况. ...

  5. 头秃了,使用@AutoConfigureBefore指定配置类顺序竟没生效?

    持续原创输出,点击上方蓝字关注我 前言 日常工作中对于Spring Boot 提供的一些启动器可能已经足够使用了,但是不可避免的需要自定义启动器,比如整合一个陌生的组件,也想要达到开箱即用的效果. 在 ...

  6. 《HelloGitHub》第 56 期

    兴趣是最好的老师,HelloGitHub 就是帮你找到兴趣! 简介 分享 GitHub 上有趣.入门级的开源项目. 这是一个面向编程新手.热爱编程.对开源社区感兴趣 人群的月刊,月刊的内容包括:各种编 ...

  7. 一次SQL注入导致的"越权"

    原文来自SecIN社区-作者:tkswifty 相关背景   在实际的业务开发中,SQL交互往往是业务系统中不可或缺的一项.在Java中提供了类似Mybatis.Hibernate.SpringDat ...

  8. 我是如何使计算提速>150倍的

    我是如何使计算提速>150倍的 我的原始文档:https://www.yuque.com/lart/blog/lwgt38 书接上文<我是如何使计算时间提速25.6倍>. 上篇文章提 ...

  9. hibernate一对多,细节讲解

    1.一对多 1).首先创建两个实体类studeninfo.java跟studentxxb.java 1)studentinfo.java表如图: package model; import java. ...

  10. .Net Core AddTransient、AddScoped和AddSingleton的使用

    区别: AddTransient 每次service请求都是获得不同的实例,暂时性模式:暂时性对象始终不同,无论是不是同一个请求(同一个请求里的不同服务)同一个客户端,每次都是创建新的实例 AddSc ...