1.Excel

1.1 Excel导入

read_excel()

pandas.read_excel(io, sheet_name=0, header=0, names=None, index_col=None, usecols=None, squeeze=False, dtype=None, 
engine=None, converters=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None,
keep_default_na=True, verbose=False, parse_dates=False, date_parser=None, thousands=None, comment=None, skipfooter=0,
convert_float=True, mangle_dupe_cols=True, **kwds)

read_excel()方法使用Python的xlrd模块来读取Excel 2003(.xls)版的文件,而Excel 2007+ (.xlsx)版本的是用xlrd或者openpyxl模块来读取的。to_excel()方法则是用来把DataFrame数据存储为Excel格式.。(标红参数为常用参数)

普通导入

导入 Excel 数据主要使用到的方法是 Pandas 中的 read_excel() 。

在进行导入操作的时候,要注意文件路径,这里的文件路径可以使用相对路径也可以使用绝对路径,但是不管哪种路径最基本的是要写对。

import pandas as pd

df = pd.read_excel("result_data.xlsx")# 相对路径
print(df) # 输出内容
plantform read_num fans_num rank_num like_num create_date
0 cnblog 215 0 118 0 2019-11-23 23:00:10
1 juejin 177 0 -2 1 2019-11-23 23:00:03
2 csdn 1652 69 0 24 2019-11-23 23:00:02
3 cnblog 650 3 191 0 2019-11-22 23:00:15
4 juejin 272 3 -23 1 2019-11-22 23:00:02
.. ... ... ... ... ... ...
403 juejin 212 0 -1 2 2020-02-20 23:00:02
404 csdn 1602 1 0 1 2020-02-20 23:00:01
405 cnblog 19 0 41 0 2020-02-21 23:00:05
406 juejin 125 1 -4 0 2020-02-21 23:00:02
407 csdn 1475 8 0 3 2020-02-21 23:00:02 [408 rows x 6 columns]

Windows 的操作系统,文件路径默认是使用 \ ,如 D:\Development\Projects\python-learning\python-data-analysis\pandas-demo\result_data.xlsx ,我们在直接使用 Windows 的文件路径的时候需要在前面增加一个 r (转义符)避免路径中的 \ 被转义,如下:

import pandas as pd
df = pd.read_excel(r"D:\Development\Projects\python-learning\python-data-analysis\pandas-demo\result_data.xlsx")
#df = pd.read_excel("D:\\Development\\Projects\\python-learning\\python-data-analysis\\pandas-demo\\result_data.xlsx") 也可以这样
print(df) # 输出内容
plantform read_num fans_num rank_num like_num create_date
0 cnblog 215 0 118 0 2019-11-23 23:00:10
1 juejin 177 0 -2 1 2019-11-23 23:00:03
2 csdn 1652 69 0 24 2019-11-23 23:00:02
3 cnblog 650 3 191 0 2019-11-22 23:00:15
4 juejin 272 3 -23 1 2019-11-22 23:00:02
.. ... ... ... ... ... ...
403 juejin 212 0 -1 2 2020-02-20 23:00:02
404 csdn 1602 1 0 1 2020-02-20 23:00:01
405 cnblog 19 0 41 0 2020-02-21 23:00:05
406 juejin 125 1 -4 0 2020-02-21 23:00:02
407 csdn 1475 8 0 3 2020-02-21 23:00:02 [408 rows x 6 columns]

指定导入 Sheet

我们在使用 Excel 导入的时候,除了可以指定文件路径,还可以选择导入的 Sheet

在设置 Sheet 的时候,我们使用参数 sheet_name 来完成,示例如下:

import pandas as pd

df = pd.read_excel(r"D:\Development\Projects\python-learning\python-data-analysis\pandas-demo\result_data.xlsx", sheet_name='result_data')
print(df) # 输出结果
plantform read_num fans_num rank_num like_num create_date
0 cnblog 215 0 118 0 2019-11-23 23:00:10
1 juejin 177 0 -2 1 2019-11-23 23:00:03
2 csdn 1652 69 0 24 2019-11-23 23:00:02
3 cnblog 650 3 191 0 2019-11-22 23:00:15
4 juejin 272 3 -23 1 2019-11-22 23:00:02
.. ... ... ... ... ... ...
403 juejin 212 0 -1 2 2020-02-20 23:00:02
404 csdn 1602 1 0 1 2020-02-20 23:00:01
405 cnblog 19 0 41 0 2020-02-21 23:00:05
406 juejin 125 1 -4 0 2020-02-21 23:00:02
407 csdn 1475 8 0 3 2020-02-21 23:00:02 [408 rows x 6 columns]

如果我们要使用一个完全不存在的 Sheet 名称会发生什么事情呢?例如我们将上面的 sheet_name 修改为 aaa ,来看下:

import pandas as pd

df = pd.read_excel(r"D:\Development\Projects\python-learning\python-data-analysis\pandas-demo\result_data.xlsx", sheet_name='aaa')
print(df) # 输出结果
Traceback (most recent call last):
File "C:\Users\inwsy\AppData\Local\Programs\Python\Python37\lib\site-packages\xlrd\book.py", line 474, in sheet_by_name
sheetx = self._sheet_names.index(sheet_name)
ValueError: 'aaa' is not in list During handling of the above exception, another exception occurred:

可以看到这里抛出了 ValueError 的异常,并且提示 aaa 不在列表中。

在指定 Sheet 名称的时候除了可以使用 Sheet 的具体名称,还可以使用 Sheet 的顺序,需要注意这个顺序开头是从 0 开始的。

import pandas as pd

df = pd.read_excel(r"D:\Development\Projects\python-learning\python-data-analysis\pandas-demo\result_data.xlsx", sheet_name=0)
print(df) # 输出结果
plantform read_num fans_num rank_num like_num create_date
0 cnblog 215 0 118 0 2019-11-23 23:00:10
1 juejin 177 0 -2 1 2019-11-23 23:00:03
2 csdn 1652 69 0 24 2019-11-23 23:00:02
3 cnblog 650 3 191 0 2019-11-22 23:00:15
4 juejin 272 3 -23 1 2019-11-22 23:00:02
.. ... ... ... ... ... ...
403 juejin 212 0 -1 2 2020-02-20 23:00:02
404 csdn 1602 1 0 1 2020-02-20 23:00:01
405 cnblog 19 0 41 0 2020-02-21 23:00:05
406 juejin 125 1 -4 0 2020-02-21 23:00:02
407 csdn 1475 8 0 3 2020-02-21 23:00:02 [408 rows x 6 columns]

指定导入行索引

我们在导入文件的时候,行索引默认是会使用从 0 开始的默认索引,如果对行索引有需求的话,可以使用 index_col 参数来设置行索引。

比如我们现在设置 create_date 这个参数作为行索引,注意参数起始从 0 开始:

import pandas as pd

df = pd.read_excel(r"D:\Development\Projects\python-learning\python-data-analysis\pandas-demo\result_data.xlsx", sheet_name=0, index_col=5)
print(df) # 输出结果
plantform read_num fans_num rank_num like_num
create_date
2019-11-23 23:00:10 cnblog 215 0 118 0
2019-11-23 23:00:03 juejin 177 0 -2 1
2019-11-23 23:00:02 csdn 1652 69 0 24
2019-11-22 23:00:15 cnblog 650 3 191 0
2019-11-22 23:00:02 juejin 272 3 -23 1
... ... ... ... ... ...
2020-02-20 23:00:02 juejin 212 0 -1 2
2020-02-20 23:00:01 csdn 1602 1 0 1
2020-02-21 23:00:05 cnblog 19 0 41 0
2020-02-21 23:00:02 juejin 125 1 -4 0
2020-02-21 23:00:02 csdn 1475 8 0 3 [408 rows x 5 columns]

指定导入列索引

同行索引一样,默认也是采用源数据的第一行作为列索引,同样,我们可以通过 header 进行列索引的设置, header 的默认参数为 0 ,也就是第一行,自定义可以使用其他行,将行号作为参数传入即可,我们演示一下使用第二行作为索引:

import pandas as pd

df = pd.read_excel(r"D:\Development\Projects\python-learning\python-data-analysis\pandas-demo\result_data.xlsx", sheet_name=0, header=1)
print(df) # 输出结果
cnblog 215 0 118 0.1 2019-11-23 23:00:10
0 juejin 177 0 -2 1 2019-11-23 23:00:03
1 csdn 1652 69 0 24 2019-11-23 23:00:02
2 cnblog 650 3 191 0 2019-11-22 23:00:15
3 juejin 272 3 -23 1 2019-11-22 23:00:02
4 csdn 2202 129 0 37 2019-11-22 23:00:01
.. ... ... ... ... ... ...
402 juejin 212 0 -1 2 2020-02-20 23:00:02
403 csdn 1602 1 0 1 2020-02-20 23:00:01
404 cnblog 19 0 41 0 2020-02-21 23:00:05
405 juejin 125 1 -4 0 2020-02-21 23:00:02
406 csdn 1475 8 0 3 2020-02-21 23:00:02 [407 rows x 6 columns]

指定导入行数

有时候,如果我们只需要了解一下这个文件中有些什么数据,那么我们就不需要导入所有的数据,可以使用 nrows 来指定导入的行数,这里我们选择导入 Excel 的前 100 行:

import pandas as pd

df = pd.read_excel(r"D:\Development\Projects\python-learning\python-data-analysis\pandas-demo\result_data.xlsx", sheet_name=0, nrows=100)
print(df) # 输出结果
plantform read_num fans_num rank_num like_num create_date
0 cnblog 215 0 118 0 2019-11-23 23:00:10
1 juejin 177 0 -2 1 2019-11-23 23:00:03
2 csdn 1652 69 0 24 2019-11-23 23:00:02
3 cnblog 650 3 191 0 2019-11-22 23:00:15
4 juejin 272 3 -23 1 2019-11-22 23:00:02
.. ... ... ... ... ... ...
95 csdn 1492 88 0 13 2019-10-23 23:51:37
96 cnblog 1338 2 219 0 2019-10-22 23:33:33
97 juejin 204 1 -6 6 2019-10-22 23:18:19
98 csdn 1064 61 7094 18 2019-10-22 23:18:08
99 cnblog -493 1 69 0 2019-10-21 22:38:32 [100 rows x 6 columns]

从结果的数据统计,可以看到我们成功的导入了前 100 行的数据,虽然行索引只有 99 ,是因为么我们 Excel 的头也占了一行。

指定导入列

有时候,我们的 Excel 中的列太多了,而我们处理的数据又不需要那么多列的时候,我们可以使用 usecols 来指定我们需要导入的列

import pandas as pd

df = pd.read_excel(r"D:\Development\Projects\python-learning\python-data-analysis\pandas-demo\result_data.xlsx", sheet_name=0, usecols=[0, 1, 2])
print(df) # 输出结果
plantform read_num fans_num
0 cnblog 215 0
1 juejin 177 0
2 csdn 1652 69
3 cnblog 650 3
4 juejin 272 3
.. ... ... ...
403 juejin 212 0
404 csdn 1602 1
405 cnblog 19 0
406 juejin 125 1
407 csdn 1475 8 [408 rows x 3 columns]

注意这里的 usecols 的参数是一个数组,表示我们将要导入的列。

1.2 Excel导出

在做数据导出前,我们需要现有一份 DataFrame 数据,这里的数据小编偷懒,就直接读取之前示例中的 Excel 了,当然这么做并没有什么意义,仅用来演示导出数据。

在 Pandas 中导出 Excel 的时候,需要使用到的方法是 to_excel() 方法,在导出 Excel 文件的时候,一定要写对文件路径,我们在前面的文章中有介绍过文件路径的书写方法,直接上示例:

import pandas as pd

# 数据读取
df = pd.read_excel("table_join_exp.xlsx", sheet_name='Sheet1') # 数据导出
df.to_excel(excel_writer=r'D:\Development\Projects\demo.xlsx')

我们来看下 to_excel() 这个方法的语法:DataFrame.to_excel(self, excel_writer, sheet_name='Sheet1', na_rep='', float_format=None,

columns=None, header=True, index=True, index_label=None, 
startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep='inf',
verbose=True, freeze_panes=None) → None

to_excel() 这个方法中的参数还是比较多的,我们挑几个常用的介绍一下:

  • excel_writer :文件路径或现有的ExcelWriter
  • sheet_name :字符串,默认是 “Sheet1”
  • float_format :格式化浮点数的字符串
  • header :写出列名。如果给定字符串列表,则假定它是列名称的别名。
  • index :写索引
  • columns :设置要导出的列
  • encoding :编码格式,一般我们选择 'utf-8' 。
  • na_rep :缺失值处理
  • inf_rep :无穷值的处理

接下来看示例,这个示例小编会尽量写得复杂一点,把我们上面的属性尽可能的都用上,并且标注好注释:

df.to_excel(excel_writer=r'D:\Development\Projects\demo.xlsx',
sheet_name='测试文档', # 创建 sheet 名称
index=False, # 设置索引不显示
columns=['编号', '姓名'], # 设置要导出的列
encoding='utf-8', # 设置编码格式
na_rep='', # 缺失值处理
inf_rep='inf' # 无穷值处理
)

示例代码与文件 https://github.com/meteor1993/python-learning/tree/master/python-data-analysis/pandas-demo

数据可视化基础专题(二):Pandas基础(一) excel导入与导出的更多相关文章

  1. HTML5大数据可视化效果(二)可交互地铁线路图

    前言 最近特别忙,承蒙大伙关照,3D机房的项目一个接着一个,领了一帮小弟,搞搞传帮带,乌飞兔走,转眼已经菊黄蟹肥……有个小弟很不错,勤奋好学,很快就把API都摸透了,自己折腾着做了个HTML5的魔都的 ...

  2. [原创.数据可视化系列之二]使用cesium三维地图展示美国全球军事基地分布

    基于浏览器的三维地图还算是一个比较高冷的东西,最主要的技术难点是如何在浏览器上 多快好省 的显示三维数据,很遗憾,还真的没有太好的的方案,只能说还有可行的方案. 很久之前用过skyline,使用CS居 ...

  3. JavaScript数据可视化编程学习(一)Flotr2,包含简单的,柱状图,折线图,饼图,散点图

    一.基础柱状图 二.基础的折线图 三.基础的饼图 四.基础的散点图 一.基础柱状图 如果你还没有想好你的数据用什么类型的图表来展示你的数据,你应该首先考虑是否可以做成柱状图.柱状图可以表示数据的变化过 ...

  4. 前端er必须掌握的数据可视化技术

    又是一月结束,打工人准时准点的汇报工作如期和大家见面啦.提到汇报,必不可少的一部分就是数据的汇总.分析. 作为一名合格的社会人,我们每天都在工作.生活.学习中和数字打交道.小到量化的工作内容,大到具体 ...

  5. PHP导出excel文件,第二步先实现自写二维数组加入模板excel文件后导出

    今天主要研究数据加入EXCEL并导出的问题,先不从数据库提取数据导出,自己先写一个二维数组,然后遍历二维数组写入excel模板中导出,首先根据模板excel的内容书写对应的二维数组 $arr=arra ...

  6. 数据可视化基础专题(三):Pandas基础(二) csv导入与导出

    1.csv导入 1.1 csv导入 .read_csv()函数 pandas.read_csv(filepath_or_buffer: Union[str, pathlib.Path, IO[~Any ...

  7. 数据可视化-svg入门基础(二)

    接上一篇:数据可视化-svg入门基础(一),基础一主要是介绍了svg概念,元素样式设置等. svg是(scalable vector graphic)伸缩矢量图像. 一.目录 (1)图形元素 (2)文 ...

  8. 数据可视化之powerBI基础(十二)PowerBI导入Excel数据有哪几种方式?

    https://zhuanlan.zhihu.com/p/64999937 Excel作为使用最频繁.应用最广泛.用户最庞大的数据处理工具,当然也应该是PowerBI最常用的数据获取方式,本文介绍一下 ...

  9. Python数据可视化基础讲解

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:爱数据学习社 首先,要知道我们用哪些库来画图? matplotlib ...

随机推荐

  1. .NET Core加解密实战系列之——RSA非对称加密算法

    目录 简介 功能依赖 生成RSA秘钥 PKCS1格式 PKCS8格式 私钥操作 PKCS1与PKCS8格式互转 PKCS1与PKCS8私钥中提取公钥 PEM操作 PEM格式密钥读取 PEM格式密钥写入 ...

  2. Python 图像处理 OpenCV (9):图像处理形态学开运算、闭运算以及梯度运算

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  3. numpy中数组(矩阵)的乘法

    我们知道在处理数据的时候,使用矩阵间的运算将会是方便直观的.matlab有先天的优势,算矩阵是它的专长.当然我们用python,经常要用到的可能是numpy这个强大的库. 矩阵有两种乘法,点乘和对应项 ...

  4. Jmeter接口测试,往MySQL数据库写数据时,中文显示???

    调Jmeter接口测试,请求字段输入中文,查看数据库插入情况, 发现数据库显示    ???

  5. [ 头皮发麻 A1 ] 队内赛3 2020 Ateneo de Manila University DISCS PrO HS Division

    都是英语阅读题 但是本菜鸡就过了一题,直接自闭mmp明天开始起床一版题 传送门 B.Riana and the Blind Date 0是闰年?惊了 后来才知道整除被除数可以为0 闰年的计算方法 \( ...

  6. Skywalking的存储配置与调优

    https://blog.csdn.net/smooth00/article/details/96479544 作为一款APM和全链路监控平台,Skywalking算是挺出色的.Skywalking是 ...

  7. linux下的c语言编程学习笔记

    视频参看csdn学院王阳和下面的linux环境下c语言编程基础相当的经典,其中王阳的视频讲的很好,相当的经典 编译hellogcc.c需要依赖/home目录下的头文件 为了避免同一个文件被includ ...

  8. Scala创建SparkStreaming获取Kafka数据代码过程

    正文 首先打开spark官网,找一个自己用版本我选的是1.6.3的,然后进入SparkStreaming   ,通过搜索这个位置找到Kafka, 点击过去会找到一段Scala的代码 import or ...

  9. 设计模式系列之外观模式(Facade Pattern)——提供统一的入口

    说明:设计模式系列文章是读刘伟所著<设计模式的艺术之道(软件开发人员内功修炼之道)>一书的阅读笔记.个人感觉这本书讲的不错,有兴趣推荐读一读.详细内容也可以看看此书作者的博客https:/ ...

  10. 计算机网络之DNS常见攻击

    DNS欺骗 在Internet上存在的DNS服务器有绝大多数都是用bind来架设的,使用的bind版本主要为bind 4.9.5+P1以前版本和bind 8.2.2-P5以前版本.这些bind有个共同 ...