题解 CF576D 【Flights for Regular Customers】
对每条边来说,可以走这条边的限制解除是按\(d\)的顺序,所以先对每条边按\(d\)排序。
然后考虑每两条边之间的处理,用一个矩阵表示当前走\(d\)步是否可以从一个点到另一个点,称其为状态矩阵,用另一个矩阵表示当前解除了限制的边,称其为边矩阵。
每次新加入一条边时,让状态矩阵乘上当前边矩阵的\(d_i-d_{i-1}\)次方,即可更新走当前步数\(d\)步点与点之间到达的状态,这一过程可以用矩阵快速幂和\(bitset\)进行优化。
然后用\(floyd\)处理出以当前解除限制的边的最短路,若起点能通过\(d\)步到达一个点,那么就用这个点到终点的最短路径加上\(d\)来更新答案。
具体实现看代码吧。
\(code:\)
#include<bits/stdc++.h>
#define maxn 200
#define all 150
#define inf 200000000000
using namespace std;
typedef long long ll;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
ll n,m,ans=inf;
ll f[maxn][maxn];
struct edge
{
int x,y,d;
}ed[maxn];
bool cmp(const edge &x,const edge &y)
{
return x.d<y.d;
}
struct matrix
{
bitset<maxn> a[maxn];
matrix()
{
for(int i=1;i<=all;++i) a[i].reset();
}
}t;
matrix operator *(const matrix &x,const matrix &y)
{
matrix z;
for(int k=1;k<=n;++k)
for(int i=1;i<=n;++i)
if(x.a[i][k])
z.a[i]|=y.a[k];
return z;
}
int main()
{
read(n),read(m);
for(int i=1;i<=m;++i)
read(ed[i].x),read(ed[i].y),read(ed[i].d);
sort(ed+1,ed+m+1,cmp);
for(int i=1;i<=n;++i) t.a[i][i]=1;
for(int p=1;p<=m;++p)
{
matrix e;
for(int i=1;i<p;++i) e.a[ed[i].x][ed[i].y]=1;
ll k=ed[p].d-ed[p-1].d;
while(k)
{
if(k&1) t=t*e;
e=e*e,k>>=1;
}
for(int i=1;i<=n;++i)
{
for(int j=1;j<=n;++j)
{
if(i==j) f[i][j]=0;
else f[i][j]=inf;
}
}
for(int i=1;i<=p;++i) f[ed[i].x][ed[i].y]=1;
for(int k=1;k<=n;++k)
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
for(int i=1;i<=n;++i)
if(t.a[1][i])
ans=min(ans,ed[p].d+f[i][n]);
}
if(ans==inf) puts("Impossible");
else printf("%lld",ans);
return 0;
}
题解 CF576D 【Flights for Regular Customers】的更多相关文章
- CF576D Flights for Regular Customers 矩阵乘法 + Bitset优化
%%%cxhscst2's blog Codeforces 576D Flights for Regular Customers(矩阵加速DP) 代码非常优美 + 简洁,学习到了 Code: #inc ...
- CF576D. Flights for Regular Customers
n<=150个点,m<=150条路,每条路Ai,Bi,Di表示Ai到Bi有一条有向边,使用他前至少要走Di条路,问1到n最少走几条路. 又是n^4过150的题.... 不同于传统的最短路, ...
- 「CF576D」 Flights for Regular Customers
「CF576D」 Flights for Regular Customers 对不起我又想网络流去了 你看这长得多像啊,走过至少多少条边就是流量下界,然后没上界 但是这个题求的最少走多少条边啊...完 ...
- 【CodeForces】576 D. Flights for Regular Customers
[题目]D. Flights for Regular Customers [题意]给定n个点m条边的有向图,每条边有di表示在经过该边前必须先经过di条边,边可重复经过,求1到n的最小经过边数.n,m ...
- Codeforces 576D Flights for Regular Customers(矩阵加速DP)
题目链接 Flights for Regular Customers 首先按照$d$的大小升序排序 然后分成$m$个时刻,每条路径一次处理过来. $can[i][j]$表示当前时刻$i$能否走到$j ...
- (中等) CF 576D Flights for Regular Customers (#319 Div1 D题),矩阵快速幂。
In the country there are exactly n cities numbered with positive integers from 1 to n. In each city ...
- Codeforces 576D Flights for Regular Customers (图论、矩阵乘法、Bitset)
题目链接 http://codeforces.com/contest/576/problem/D 题解 把边按\(t_i\)从小到大排序后枚举\(i\), 求出按前\((i-1)\)条边走\(t_i\ ...
- Codeforces 576D Flights for Regular Customers 矩阵快速幂+DP
题意: 给一个$n$点$m$边的连通图 每个边有一个权值$d$ 当且仅当当前走过的步数$\ge d$时 才可以走这条边 问从节点$1$到节点$n$的最短路 好神的一道题 直接写做法喽 首先我们对边按$ ...
- Codeforces 576D. Flights for Regular Customers(倍增floyd+bitset)
这破题调了我一天...错了一大堆细节T T 首先显然可以将边权先排序,然后逐个加进图中. 加进图后,倍增跑跑看能不能到达n,不能的话加新的边继续跑. 倍增的时候要预处理出h[i]表示转移矩阵的2^0~ ...
随机推荐
- spring 整合redis集群中使用@autowire无效问题的解决办法
1.视频参考黑马32期宜立方商城第6课 redis对于的代码 我们先变向一个redis客户端的接口文件 package com.test; public interface JedisClient { ...
- Docker搭建Rancher平台
sudo docker run -d --restart=unless-stopped -p 8080:8080 rancher/server service docker resatrt启动失败 ...
- Docker基本命令及工作原理
第一个Docker容器 1.首先确保Docker运行正常:docker info
- 【贪心】Emergency Evacuation
题目 大致题意 把指定的人从同一出口送出车外,且同一位置不能同时有两个人,求所需的最短时间. 分析 第一感觉就是利用贪心思想解决问题,但是这道题的数据范围用模拟的话肯定是会爆掉的,所以这是不可取的.我 ...
- C#客户端通过安全凭证调用webservice
怎么解决给XML Web services 客户端加上安全凭据,从而实现调用安全的远程web方法?首先,有远程web服务Service继承自System.Web.Services.Protocols. ...
- css3支持动画吗?css3可以用于网页动画的展现吗
CSS3 主要可以分为几个模块:边框和背景,渐变,文字特效,字体,2D/3D转换,动画(过渡动画和动画),选择器,盒模型,多列布局,用户界面. css3动画有2类:一种是transition的,另一种 ...
- HTML5(一)初识HTML5
HTML5 简介 HTML5是HTML最新的修订版本,2014年10月由万维网联盟(W3C)完成标准制定. 目的是为了在移动设备上支持多媒体. HTML5 的改进 完全支持 CSS3 Video 和 ...
- CountDownLatch 线程工具类
CountDownLatch:概念是,允许一个或多个线程等待其他线程完成操作: 在线程基础知识中,学习过线程的join方法,当前线程阻塞等待join线程执行完毕才能执行: 测试代码如下: public ...
- (二)LVS介绍
LVS分3种模式 (a)NAT(网络地址映射):通过网络地址转换的方法来实现调度 优点:支持所有操作系统及私有网络,且只需一个公网 IP 地址 缺点:用户请求和响应报文都必须 ...
- The Shortest Statement CodeForces - 1051F 最小生成树+并查集+LCA
题目描述 You are given a weighed undirected connected graph, consisting of n vertices and mm edges. You ...