对每条边来说,可以走这条边的限制解除是按\(d\)的顺序,所以先对每条边按\(d\)排序。

然后考虑每两条边之间的处理,用一个矩阵表示当前走\(d\)步是否可以从一个点到另一个点,称其为状态矩阵,用另一个矩阵表示当前解除了限制的边,称其为边矩阵。

每次新加入一条边时,让状态矩阵乘上当前边矩阵的\(d_i-d_{i-1}\)次方,即可更新走当前步数\(d\)步点与点之间到达的状态,这一过程可以用矩阵快速幂和\(bitset\)进行优化。

然后用\(floyd\)处理出以当前解除限制的边的最短路,若起点能通过\(d\)步到达一个点,那么就用这个点到终点的最短路径加上\(d\)来更新答案。

具体实现看代码吧。

\(code:\)

#include<bits/stdc++.h>
#define maxn 200
#define all 150
#define inf 200000000000
using namespace std;
typedef long long ll;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
ll n,m,ans=inf;
ll f[maxn][maxn];
struct edge
{
int x,y,d;
}ed[maxn];
bool cmp(const edge &x,const edge &y)
{
return x.d<y.d;
}
struct matrix
{
bitset<maxn> a[maxn];
matrix()
{
for(int i=1;i<=all;++i) a[i].reset();
}
}t;
matrix operator *(const matrix &x,const matrix &y)
{
matrix z;
for(int k=1;k<=n;++k)
for(int i=1;i<=n;++i)
if(x.a[i][k])
z.a[i]|=y.a[k];
return z;
}
int main()
{
read(n),read(m);
for(int i=1;i<=m;++i)
read(ed[i].x),read(ed[i].y),read(ed[i].d);
sort(ed+1,ed+m+1,cmp);
for(int i=1;i<=n;++i) t.a[i][i]=1;
for(int p=1;p<=m;++p)
{
matrix e;
for(int i=1;i<p;++i) e.a[ed[i].x][ed[i].y]=1;
ll k=ed[p].d-ed[p-1].d;
while(k)
{
if(k&1) t=t*e;
e=e*e,k>>=1;
}
for(int i=1;i<=n;++i)
{
for(int j=1;j<=n;++j)
{
if(i==j) f[i][j]=0;
else f[i][j]=inf;
}
}
for(int i=1;i<=p;++i) f[ed[i].x][ed[i].y]=1;
for(int k=1;k<=n;++k)
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
for(int i=1;i<=n;++i)
if(t.a[1][i])
ans=min(ans,ed[p].d+f[i][n]);
}
if(ans==inf) puts("Impossible");
else printf("%lld",ans);
return 0;
}

题解 CF576D 【Flights for Regular Customers】的更多相关文章

  1. CF576D Flights for Regular Customers 矩阵乘法 + Bitset优化

    %%%cxhscst2's blog Codeforces 576D Flights for Regular Customers(矩阵加速DP) 代码非常优美 + 简洁,学习到了 Code: #inc ...

  2. CF576D. Flights for Regular Customers

    n<=150个点,m<=150条路,每条路Ai,Bi,Di表示Ai到Bi有一条有向边,使用他前至少要走Di条路,问1到n最少走几条路. 又是n^4过150的题.... 不同于传统的最短路, ...

  3. 「CF576D」 Flights for Regular Customers

    「CF576D」 Flights for Regular Customers 对不起我又想网络流去了 你看这长得多像啊,走过至少多少条边就是流量下界,然后没上界 但是这个题求的最少走多少条边啊...完 ...

  4. 【CodeForces】576 D. Flights for Regular Customers

    [题目]D. Flights for Regular Customers [题意]给定n个点m条边的有向图,每条边有di表示在经过该边前必须先经过di条边,边可重复经过,求1到n的最小经过边数.n,m ...

  5. Codeforces 576D Flights for Regular Customers(矩阵加速DP)

    题目链接  Flights for Regular Customers 首先按照$d$的大小升序排序 然后分成$m$个时刻,每条路径一次处理过来. $can[i][j]$表示当前时刻$i$能否走到$j ...

  6. (中等) CF 576D Flights for Regular Customers (#319 Div1 D题),矩阵快速幂。

    In the country there are exactly n cities numbered with positive integers from 1 to n. In each city ...

  7. Codeforces 576D Flights for Regular Customers (图论、矩阵乘法、Bitset)

    题目链接 http://codeforces.com/contest/576/problem/D 题解 把边按\(t_i\)从小到大排序后枚举\(i\), 求出按前\((i-1)\)条边走\(t_i\ ...

  8. Codeforces 576D Flights for Regular Customers 矩阵快速幂+DP

    题意: 给一个$n$点$m$边的连通图 每个边有一个权值$d$ 当且仅当当前走过的步数$\ge d$时 才可以走这条边 问从节点$1$到节点$n$的最短路 好神的一道题 直接写做法喽 首先我们对边按$ ...

  9. Codeforces 576D. Flights for Regular Customers(倍增floyd+bitset)

    这破题调了我一天...错了一大堆细节T T 首先显然可以将边权先排序,然后逐个加进图中. 加进图后,倍增跑跑看能不能到达n,不能的话加新的边继续跑. 倍增的时候要预处理出h[i]表示转移矩阵的2^0~ ...

随机推荐

  1. Redis设置并查看最大连接数

    在 Redis2.4 中,最大连接数是被直接硬编码在代码里面的,而在2.6版本中这个值变成可配置的. maxclients 的默认值是 10000,你也可以在 redis.conf 中对这个值进行修改 ...

  2. Springboot 集成 ElasticSearch 踩坑

    这里只涉及到基础使用 导包 <dependency> <groupId>org.springframework.boot</groupId> <artifac ...

  3. Python 简明教程 --- 18,Python 面向对象

    微信公众号:码农充电站pro 个人主页:https://codeshellme.github.io 代码能借用就借用. -- Tom Duff 目录 编程可分为面向过程编程和面向对象编程,它们是两种不 ...

  4. .NET 5.0预览版6发布:支持Windows ARM64设备

    2020年6月25日,微软dotnet团队在博客宣布了第六个 .NET 5.0 的预览版:https://devblogs.microsoft.com/dotnet/announcing-net-5- ...

  5. js语法基础入门(5.2)

    5.2.循环结构 当一段代码被重复调用多次的时候,可以用循环结构来实现,就像第一个实例中出现的场景一样,需要重复询问对方是否有空,这样就可以使用循环结构来搞定 5.2.1.for循环语句 //语法结构 ...

  6. QtableWidget用法流程

    QtableWidget用法流程 ​ 作者:流火 日期:2020/5/10 QTableWidget的基本构造函数 QTableWidget 是QTableview的子类.主要去呗是QTableVie ...

  7. Java 从入门到进阶之路(二十七)

    在之前的文章我们介绍了一下 Java 中的  集合框架中的Collection,本章我们来看一下 Java 集合框架中的 Map. Map 接口定义的集合又称查找表,用于存储所谓“Key-Value” ...

  8. Illustrate Java Access Levels

    https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html 官网教程,清晰明了. (完)

  9. PDF无法复制/打印/编辑怎么办?

    PDF的内容不能复制/打印/编辑,主要有两种原因: 1.PDF文件设置了权限保护 2.PDF内容是图片 第一种,PDF被设置了权限保护 这种的特点是可以选中PDF里的文字,但无法复制 PDF格式标准内 ...

  10. " 橘松 " 的自我介绍

    昵称:(OrangeCsong)橘松(在其他平台也是这个名字) 年龄:95后(摩羯座) 性别:boy 性格:性格还阔以,不轻易发脾气,沉稳.喜欢独立思考. 爱好:运动(工作了,运动时间太少),基金理财 ...