先找到

题意:

  中文题,没什么好解释的,也没什么歧义。

分析:

  首先我们想一下他的路径将会是怎样的:A-B-C/A-C-B,其实就是求一下min(AB+BC,AC+BC),ABC任选。挺简单,首先证明一点:BC不是直径时不会更优,证明之后,我们就可以直接找到直径,然后遍历每个点,实在是有点简单了,也没啥细节。

  还可以这么想:他的路径是这样的:A-O-B-O-C/A-O-C-O-B,及他是由三段组成的,枚举点O(可以理解成二次元换根,或者说就是两遍dfs)计算最长的三段,求max(ma1+ma2*2+ma3)就好了。也是过于简单。最后就是代码。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=+;
int head[maxn];
struct E{
int to;
int next;
long long val;
E(){
to=next=val=;
}
}ed[maxn*];
int tot;
void J(int a,int b,long long c){
tot++;
ed[tot].to=b;
ed[tot].val=c;
ed[tot].next=head[a];
head[a]=tot;
}
long long ma1[maxn];
long long ma2[maxn];
long long ans;
int jl;
long long j1[maxn];//记录到两段的距离
long long j2[maxn];
int m1a[maxn];//记录节点
int m2a[maxn];
void Dfs1(int x,int fa){
m1a[x]=m2a[x]=x;//初始化,
int js=;
for(int i=head[x];i;i=ed[i].next){
if(ed[i].to==fa)
continue;
js++;
Dfs1(ed[i].to,x);
ma2[x]=max(ma2[x],ed[i].val+ma1[ed[i].to]);
if(ma2[x]==ed[i].val+ma1[ed[i].to])
m2a[x]=m1a[ed[i].to];
if(ma2[x]>ma1[x]){
swap(ma2[x],ma1[x]);
swap(m2a[x],m1a[x]);
}
}
ans=max(ma1[x]+ma2[x],ans);
if(ma1[x]+ma2[x]==ans)
jl=x;
if(!js)
m1a[x]=m2a[x]=x;
}
void Dfs2(int x,int fa){
for(int i=head[x];i;i=ed[i].next){
if(ed[i].to==fa)
continue;
j1[ed[i].to]=j1[x]+ed[i].val;
Dfs2(ed[i].to,x);
}
}
void Dfs3(int x,int fa){
for(int i=head[x];i;i=ed[i].next){
if(ed[i].to==fa)
continue;
j2[ed[i].to]=j2[x]+ed[i].val;
Dfs3(ed[i].to,x);
}
}
int main(){
int n,m;
scanf("%d%d",&n,&m);
int js1,js2;
long long js3;
for(int i=;i<=m;i++){
scanf("%d%d%lld",&js1,&js2,&js3);
J(js1,js2,js3);
J(js2,js1,js3);
}
Dfs1(,);
Dfs2(m1a[jl],);
Dfs3(m2a[jl],);
long long p=;
for(int i=;i<=n;i++)
p=max(p,min(j1[i],j2[i])+ans);
printf("%lld",p);
return ;
}

逃学的小孩,树形dp的更多相关文章

  1. BZOJ 1509: [NOI2003]逃学的小孩( 树形dp )

    树形dp求出某个点的最长3条链a,b,c(a>=b>=c), 然后以这个点为交点的最优解一定是a+2b+c.好像还有一种做法是求出树的直径然后乱搞... ----------------- ...

  2. BZOJ 1509[NOI 2003]逃学的小孩 树形dp

    1509: [NOI2003]逃学的小孩 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 995  Solved: 505[Submit][Status][ ...

  3. BZOJ1509: [NOI2003]逃学的小孩 (树形DP)

    题意:给一棵树 选三个点A,B,C 求A到B的再从B到C的距离最大值 需要满足AB的距离小于AC的距离 题解:首先树上的最大距离就想到了直径 但是被样例误导了TAT BC两点构成了直径 我一开始以为A ...

  4. 树形DP(记忆化搜索) HYSBZ - 1509

    题目链接:https://vjudge.net/problem/HYSBZ-1509 我参考的证明的论文:8.陈瑜希<多角度思考 创造性思维>_百度文库  https://wenku.ba ...

  5. 树形dp专题总结

    树形dp专题总结 大力dp的练习与晋升 原题均可以在网址上找到 技巧总结 1.换根大法 2.状态定义应只考虑考虑影响的关系 3.数据结构与dp的合理结合(T11) 4.抽直径解决求最长链的许多类问题( ...

  6. 树形DP 学习笔记

    树形DP学习笔记 ps: 本文内容与蓝书一致 树的重心 概念: 一颗树中的一个节点其最大子树的节点树最小 解法:对与每个节点求他儿子的\(size\) ,上方子树的节点个数为\(n-size_u\) ...

  7. Codeforces 633F 树的直径/树形DP

    题意:有两个小孩玩游戏,每个小孩可以选择一个起始点,并且下一个选择的点必须和自己选择的上一个点相邻,问两个选的点权和的最大值是多少? 思路:首先这个问题可以转化为求树上两不相交路径的点权和的最大值,对 ...

  8. poj3417 LCA + 树形dp

    Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4478   Accepted: 1292 Descripti ...

  9. COGS 2532. [HZOI 2016]树之美 树形dp

    可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...

随机推荐

  1. (七)DVWA之SQL Injection--SQLMap测试(Low)

    目录结构 一.测试需求分析 二.SQLMap利用SQL注入漏洞,获取数据库信息 1.判断是否存在注入点 2.获取DBMS中所有的数据库名称 3.获取Web应用当前连接的数据库 4.列出数据库中的所有用 ...

  2. 关于adb的下载和基本使用

    我们无论是开发还是测试,对Android SDK一定都不陌生,如果我们要使用adb(Android debug bridge)命令,那么这个就必不可少了. 1.给大家提供一个下载地址:https:// ...

  3. Autoware 标定工具 Calibration Tool Kit 联合标定 Robosense-16 和 ZED 相机!

    一.安装 Autoware & ZED 内参标定 & 外参标定准备 之前的这篇文章:Autoware 进行 Robosense-16 线雷达与 ZED 双目相机联合标定! 记录了我用 ...

  4. sql 获取当前时间的前一天,不加时分秒

    select convert(datetime,convert(char(20),dateadd(day,-1,getdate()),102)) -1 为减去天数 getdate 为 获取当前时间

  5. 线上排查Class、Jar加载问题的一般方法

    问题背景 本问题源于<ojdbc6中OraclePreparedStatement的ArrayIndexOutOfBoundsException异常BUG-6396242>这篇博文中最后思 ...

  6. 【JMeter_22】JMeter逻辑控制器__录制控制器<Recording Controller>

    录制控制器<Recording Controller> 个人感觉录制的脚本缺陷太明显,没有研究过,暂不做介绍,等后续空了研究后再写

  7. iOS开发实践-OOM治理

    概览 说起iOS的OOM问题大家第一想到的应该更多的是内存泄漏(Memory Leak),因为无论是从早期的MRC还是2011年Apple推出的ARC内存泄漏问题一直是iOS开发者比较重视的问题,比如 ...

  8. 北京开发票/v电13543443967

    关于事项:Iㄋ5一★4З44一★ㄋ9.б7开发票的准备资料必须要公司名称个人的话就用个人名字和身份证去税务柜台申请办理!公司的话要提供公司全称就是营业执照上的名称,纳税人税号,如果是开普通增值税发票的 ...

  9. gerapy 爬虫web调度可视化工具(基于scrapyd)

    web 基于scrapyd 提供主机管理功能 基于scrapyd管理已安装服务的主机. 进入具体主机管理页面,会自动加载所有已知爬虫任务: 可直接可以调度.运行.查看日志. 提供项目管理功能 将已知项 ...

  10. java基础——并发1

    一.并发的定义 并发:对于这个概念一直就是没怎么搞懂,就是感觉特别的生疏,(自己从从字面上理解就是多个东西,一起出发),所以就上网上查了一些资料: 同时拥有两个或多个线程,如果程序在单核处理器上运行, ...