P4449 于神之怒加强版
\(\color{#0066ff}{ 题目描述 }\)
给定n,m,k,计算
\(\sum_{i=1}^n \sum_{j=1}^m \mathrm{gcd}(i,j)^k\)
对1000000007取模的结果
\(\color{#0066ff}{输入格式}\)
多组数据。 第一行是两个数T,K; 之后的T行,每行两个整数n,m;
\(\color{#0066ff}{输出格式}\)
K行,每行一个结果
\(\color{#0066ff}{输入样例}\)
1 2
3 3
\(\color{#0066ff}{输出样例}\)
20
\(\color{#0066ff}{数据范围与提示}\)
T<=2000,1<=N,M,K<=5000000
\(\color{#0066ff}{ 题解 }\)
就是要求
\]
枚举gcd
\]
把\(d^k\)提出来,d再除上去,就是一个基本模型了
\]
\]
\]
后面好像空了。。。
\]
来一发kd换q
\]
“额,这怎么处理”
“暴力了解一下”
线性筛出\(\mu\) 然后\(O(nlogn)\)求出\(d^k\)
之后枚举倍数\(O(nlogn)把后面的\)\sum$搞出来,数列分块就行了
#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int mod = 1e9 + 7;
const int maxn = 5e6 + 100;
int k;
int mu[maxn], pri[maxn], tot, mi[maxn];
bool vis[maxn];
LL h[maxn];
LL ksm(LL x, LL y) {
LL re = 1LL;
while(y) {
if(y & 1) re = re * x % mod;
x = x * x % mod;
y >>= 1;
}
return re;
}
void predoit() {
mu[1] = 1;
for(int i = 2; i < maxn; i++) {
if(!vis[i]) pri[++tot] = i, mu[i] = -1;
for(int j = 1; j <= tot && (LL)i * pri[j] < maxn; j++) {
vis[i * pri[j]] = true;
if(i % pri[j] == 0) break;
else mu[i * pri[j]] = -mu[i];
}
}
for(int i = 1; i < maxn; i++) mi[i] = ksm(i, k);
for(int i = 1; i < maxn; i++)
for(int j = i; j < maxn; j += i)
(h[j] += (1LL * mu[j / i] * mi[i] % mod)) %= mod;
for(int i = 2; i < maxn; i++) (h[i] += h[i - 1]) %= mod;
}
LL work(LL n, LL m) {
LL ans = 0;
for(LL l = 1, r; l <= std::min(n, m); l = r + 1) {
r = std::min(n / (n / l), m / (m / l));
LL tot1 = (n / l) * (m / l) % mod;
tot1 = (tot1 * ((h[r] - h[l - 1]) % mod + mod) % mod) % mod;
(ans += tot1) %= mod;
}
return ans;
}
int main() {
int T;
for(T = in(), k = in(), predoit(); T --> 0;)
printf("%lld\n", work(in(), in()));
return 0;
}
P4449 于神之怒加强版的更多相关文章
- P4449 于神之怒加强版 (莫比乌斯反演)
[题目链接] https://www.luogu.org/problemnew/show/P4449 给定n,m,k,计算 \(\sum_{i=1}^n \sum_{j=1}^m \mathrm{gc ...
- 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演
https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...
- 并不对劲的p4449于神之怒加强版
题目大意 给定\(t,k(t\leq2000,k\leq5*10^6)\) \(t\)组询问,每组给出\(n,m(n,m\leq5*10^6)\)求$\sum_{i=1}^n \sum_{j=1}^m ...
- 题解 P4449 于神之怒加强版
这道题算是我完完整整推的第一道题,写篇题解纪念一下. 题目 废话不多说,直接开始推式子(给新手准备,过程较详细,大佬可自行跳步),以下过程中均假设 \((n\le m)\),\([d=1]\) 类似于 ...
- 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 241 Solved: 119[Submit][Status][Discu ...
- 【BZOJ4407】于神之怒加强版(莫比乌斯反演)
[BZOJ4407]于神之怒加强版(莫比乌斯反演) 题面 BZOJ 求: \[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)^k\] 题解 根据惯用套路 把公约数提出来 \[\sum ...
- BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494[Submit][Status][Disc ...
- bzoj 4407 于神之怒加强版 (反演+线性筛)
于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1184 Solved: 535[Submit][Status][Discuss] D ...
- 【BZOJ4407】于神之怒加强版 莫比乌斯反演
[BZOJ4407]于神之怒加强版 Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行, ...
随机推荐
- Git命令之创建版本
安装 安装好Git后,将会在桌面生成 这样一个图标 运行后将会是类似控制台程序的黑色窗口,其中mingw64(参考百度百科).这样的话就可以在输入命令 例如 :git 见到下图有详细的用法表示成功否则 ...
- react核心知识点高度总结
本文系统的将react的语法以最简练的方式列举出来 安装 写在前面 JSX 组件的定义 state 生命周期 方法 条件渲染 列表 表单 组合嵌套 扩展语法 context传递props 错误拦截 r ...
- windows异常演示,指定异常类型,然后生成异常
#include "stdafx.h"#include <Windows.h>#include <float.h> DWORD Filter (LPEXCE ...
- Samba服务学习报错总结
1 2 3 4 5 此文献来至百度文库 http://wenku.baidu.com/link?url=hkHembjXcjoYRU9ky34a46Lzv5SAEutwa0v1_F8INQsdg_KK ...
- 【263】Linux 添加环境变量 & 全局 shell 脚本
Linux电脑添加环境变量 方法一:通过修改 profile 文件添加环境变量 1. 打开终端,输入[vi /etc/profile],如下所示,点击回车 [ocean@ygs-jhyang-w1 L ...
- jQuery-图片的放大镜显示效果(需要大小图)
1.default.aspx <%@ Page Language=.2em; height:.1em; text-align:center; font-size:128px;} .zxx_ ...
- Ros学习service——小海龟
rosservice 服务(services)是节点之间通讯的另一种方式.服务允许节点发送请求(request) 并获得一个响应(response) rosservice list 输出可用服务的信息 ...
- static、静态变量、静态方法
1 静态:static 1.1 用法 是一个修饰符:用于修饰成员(成员变量和成员函数) 1.2 好处 当成员变量被静态static修饰后,就多了一种调用方式,除了可以被对象调用外,还可以直接被类名调用 ...
- Boost中实现线程安全
博客转载自: http://www.cnblogs.com/lvdongjie/p/4447142.html 1 boost原子变量和线程 #include <boost/thread.hpp& ...
- vray学习笔记(2)vray工作流程
在bilibili上面搜索到了一个vray的教程,虽然是英语的,细节方面可能听不太懂,但可以了解整个工作流程,工作流程太重要了,先看下视频的目录: 第1节到第9节都是建模的内容. 第10节和第13节是 ...