\(\color{#0066ff}{ 题目描述 }\)

给定n,m,k,计算

\(\sum_{i=1}^n \sum_{j=1}^m \mathrm{gcd}(i,j)^k\)

对1000000007取模的结果

\(\color{#0066ff}{输入格式}\)

多组数据。 第一行是两个数T,K; 之后的T行,每行两个整数n,m;

\(\color{#0066ff}{输出格式}\)

K行,每行一个结果

\(\color{#0066ff}{输入样例}\)

1 2
3 3

\(\color{#0066ff}{输出样例}\)

20

\(\color{#0066ff}{数据范围与提示}\)

T<=2000,1<=N,M,K<=5000000

\(\color{#0066ff}{ 题解 }\)

就是要求

\[\sum_{i=1}^n \sum_{j=1}^m gcd(i,j)^k
\]

枚举gcd

\[\sum_{d=1}^{min(n,m)}\sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)==d]d^k
\]

把\(d^k\)提出来,d再除上去,就是一个基本模型了

\[\sum_{d=1}^{min(n,m)}d^k\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor} \sum_{j=1}^{\lfloor\frac{m}{d}\rfloor} [gcd(i,j)==1]
\]

\[\sum_{d=1}^{min(n,m)}d^k\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor} \sum_{j=1}^{\lfloor\frac{m}{d}\rfloor} \sum_{k|gcd(i,j)} \mu(k)
\]

\[\sum_{d=1}^{min(n,m)}d^k\sum_{k=1}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)}\mu(k)\sum_{i=1}^{\lfloor\frac{n}{kd}\rfloor} \sum_{j=1}^{\lfloor\frac{m}{kd}\rfloor} 1
\]

后面好像空了。。。

\[\sum_{d=1}^{min(n,m)}d^k\sum_{k=1}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)}\mu(k) * \lfloor\frac{n}{kd}\rfloor * \lfloor\frac{m}{kd}\rfloor
\]

来一发kd换q

\[\sum_{q=1}^{min(n,m)} \lfloor\frac{n}{q}\rfloor * \lfloor\frac{m}{q}\rfloor \sum_{d|q}\mu(\frac q d)*d^k
\]

“额,这怎么处理”

“暴力了解一下”

线性筛出\(\mu\) 然后\(O(nlogn)\)求出\(d^k\)

之后枚举倍数\(O(nlogn)把后面的\)\sum$搞出来,数列分块就行了

#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int mod = 1e9 + 7;
const int maxn = 5e6 + 100;
int k;
int mu[maxn], pri[maxn], tot, mi[maxn];
bool vis[maxn];
LL h[maxn];
LL ksm(LL x, LL y) {
LL re = 1LL;
while(y) {
if(y & 1) re = re * x % mod;
x = x * x % mod;
y >>= 1;
}
return re;
}
void predoit() {
mu[1] = 1;
for(int i = 2; i < maxn; i++) {
if(!vis[i]) pri[++tot] = i, mu[i] = -1;
for(int j = 1; j <= tot && (LL)i * pri[j] < maxn; j++) {
vis[i * pri[j]] = true;
if(i % pri[j] == 0) break;
else mu[i * pri[j]] = -mu[i];
}
}
for(int i = 1; i < maxn; i++) mi[i] = ksm(i, k);
for(int i = 1; i < maxn; i++)
for(int j = i; j < maxn; j += i)
(h[j] += (1LL * mu[j / i] * mi[i] % mod)) %= mod;
for(int i = 2; i < maxn; i++) (h[i] += h[i - 1]) %= mod;
}
LL work(LL n, LL m) {
LL ans = 0;
for(LL l = 1, r; l <= std::min(n, m); l = r + 1) {
r = std::min(n / (n / l), m / (m / l));
LL tot1 = (n / l) * (m / l) % mod;
tot1 = (tot1 * ((h[r] - h[l - 1]) % mod + mod) % mod) % mod;
(ans += tot1) %= mod;
}
return ans;
}
int main() {
int T;
for(T = in(), k = in(), predoit(); T --> 0;)
printf("%lld\n", work(in(), in()));
return 0;
}

P4449 于神之怒加强版的更多相关文章

  1. P4449 于神之怒加强版 (莫比乌斯反演)

    [题目链接] https://www.luogu.org/problemnew/show/P4449 给定n,m,k,计算 \(\sum_{i=1}^n \sum_{j=1}^m \mathrm{gc ...

  2. 洛谷 - P4449 - 于神之怒加强版 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P4449 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{m} gcd(i, ...

  3. 并不对劲的p4449于神之怒加强版

    题目大意 给定\(t,k(t\leq2000,k\leq5*10^6)\) \(t\)组询问,每组给出\(n,m(n,m\leq5*10^6)\)求$\sum_{i=1}^n \sum_{j=1}^m ...

  4. 题解 P4449 于神之怒加强版

    这道题算是我完完整整推的第一道题,写篇题解纪念一下. 题目 废话不多说,直接开始推式子(给新手准备,过程较详细,大佬可自行跳步),以下过程中均假设 \((n\le m)\),\([d=1]\) 类似于 ...

  5. 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 241  Solved: 119[Submit][Status][Discu ...

  6. 【BZOJ4407】于神之怒加强版(莫比乌斯反演)

    [BZOJ4407]于神之怒加强版(莫比乌斯反演) 题面 BZOJ 求: \[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)^k\] 题解 根据惯用套路 把公约数提出来 \[\sum ...

  7. BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 1067  Solved: 494[Submit][Status][Disc ...

  8. bzoj 4407 于神之怒加强版 (反演+线性筛)

    于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 1184  Solved: 535[Submit][Status][Discuss] D ...

  9. 【BZOJ4407】于神之怒加强版 莫比乌斯反演

    [BZOJ4407]于神之怒加强版 Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行, ...

随机推荐

  1. Angular常犯的错误

    ng-app="name名称" name名称  == 一定要写对 其次 angular.min导入一定要正确,一定要导入正确的angular.min的库 再次js中要写自调用 (f ...

  2. Celery-4.1 用户指南: Signals (信号)

    基础 有多种类型的事件可以触发信号,你可以连接到这些信号,使得在他们触发的时候执行操作. 连接到 after_task_publish 信号的示例: from celery.signals impor ...

  3. [vijos1246]文科生的悲哀(二) 动态规划

    背景 化学不及格的Matrix67无奈选择了文科.他必须硬着头皮艰难地进行着文科的学习. 描述 这学期的政治.历史和地理课本各有n章.每一科的教学必须按章节从前往后依次进行.若干章政治.若干章历史和若 ...

  4. python读取配置文件 ConfigParser

    Python 标准库的 ConfigParser 模块提供一套 API 来读取和操作配置文件. 配置文件的格式 a) 配置文件中包含一个或多个 section, 每个 section 有自己的 opt ...

  5. Activity的显式跳转和隐式挑战

    安卓中Activity的跳转几乎是每一个APP都会用到的技术点.而且他的使用时十分简单的. 这里我们先说一下主要的技术要点: 1.在清单文件中注册新的Activity 2.通过意图跳转 这里我们看一下 ...

  6. tar打包tar.gz文件

    命令格式: tar zcvf dir.tar.gz ./dir 压缩后的文件解压出来会是dir这个文件夹

  7. Python 黑客 --- 001 UNIX口令破解机

    Python 黑客 实战:UNIX口令破解机 使用的系统:Ubuntu 14.04 LTS Python语言版本:Python 2.7.10 V crypt 库是Python内置的库.在UNIX系统使 ...

  8. 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-005插入排序的改进版

    package algorithms.elementary21; import algorithms.util.StdIn; import algorithms.util.StdOut; /***** ...

  9. linux安装thrift

    安装配置Thrift Thrift的编译器使用C++编写的,在安装编译器之前,首先应该保证操作系统基本环境支持C++的编译,安装相关依赖的软件包,如下所示 sudo yum install autom ...

  10. tomcat8.0的下载安装配置

    配置tomcat前要先配置JDK的环境变量 具体方法请点链接JDK环境变量配置 首先要 到官网下载tomcat tomcat官网 进入官网后 如图在左侧选择自己想要下载的版本,这里我以8.0版本为例 ...