直接选择排序&堆排序
1.什么是直接选择排序?
直接选择排序(Straight Select Sort)是一种简单的排序方法,它的基本思想是:通过n-i次关键字之间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1<=i<=n)个记录交换位置。
时间复杂度O(n2)
在排序时找到合适的关键字再做交换,并且只移动一次。
public class Test1{
public static void selectSort(int[] arr){
for(int i=0;i<arr.lenght;i++){
for(int j=i+1;j<arr.length;j++){
if(arr[i]>arr[j])//找到后面的元素比前面的小,就交换
swap(arr,i,j);
}
}
}
private static void swap(int[] arr,int x,int y){
int temp=arr[x];
arr[x]=arr[y];
arr[y]=temp;
}
public static void main(String[] args){
int[] a={4,2,1,6,0,-5,1};
int i;
selectSort(a);
for(i=0;i<7;i++)
System.out.print(a[i]);
}
}
栗子:排序算法中,比较次数与初始序列无关的排序方法有哪些?D
A.希尔排序
B.快速排序
C.堆排序
D.选择排序
2.堆排序
时间复杂度为O(nlogn),不稳定排序
堆是一个完全二叉树,树中每一个结点对应于原始数据的一个记录,并且每个结点应满足以下条件:非叶结点的数据大于或等于其左右孩子结点的数据(大顶堆)
若是按从小到大的顺序排序,则要求非叶结点的数据小于或等于其左右孩子结点的数据(小顶堆)
由堆的定义可以看出,其根结点为最大值,堆排序就是利用这一特性进行的。
堆的存储
一般都用数组来表示堆,i 结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如第0个结点左右子结点下标分别为1和2。
关于二叉树的一个性质:
如果对于一棵有n个结点的完全二叉树,对于任一结点 i有:
(1)如果i=1,则结点 i 是二叉树的根,无双亲;如果i>1,则其双亲是结点 i/2
(2)如果 2i>n,则结点 i 无左孩子(结点i是叶子结点),否则其左孩子是结点2i;
(3)如果2i+1>n,则结点 i 无右孩子,否则其右孩子是结点2i+1;
堆排序的大致过程包括两个阶段:
(1)将无序的数据构成堆(即用无序的数据生成满足堆定义的完全二叉树)
(2)利用堆排序(即用上一步生成的堆输出有序数据)
首先把无序数据构成堆
//构成堆
public static void HeapAdjust(int[] a,int s,int n){
int j,t;
while(2*s+1<n){//第s个结点有右子树
j=2*s+1;//左子树
if((j+1)<n){
if(a[j]<a[j+1])//如果左子树小于右子树,则需要比较右子树和s结点
j++;//序号加1,指向右子树
}
if(a[s]<a[j]){//如果s结点小于它的右子树,就进行交换
t=a[s];
a[s]=a[j];
a[j]=t;
s=j;//之前的堆被破坏了,需要调整
}
else{//比较左右孩子均大则堆未被破坏,不需要调整
break;
}
}
}
然后,每次将最后的数据(37)与最上面的数据(92)交换顺序,然后把把交换后的最上面的数据(92)输出,由于交换后肯定不满足堆了,就再重新构成堆。接下来接着进行交换。
//堆排序
public static void HeapSort(int[] a,int n){
int t,i;
int j;
for(i=n/2-1;i>=0;i--){
HeapAdjust(a,i,n);//将a[0,n-1]构成大顶堆
}
for(i=n-1;i>0;i++){//将最后的一个,与第一个进行比较
t=a[0];
a[0]=a[i];
a[i]=t;
HeapAdjust(a,0,i);//将a[0]至a[i]重新进行调整
}
}
直接选择排序&堆排序的更多相关文章
- 排序 选择排序&&堆排序
选择排序&&堆排序 1.选择排序: 介绍:选择排序(Selection sort)是一种简单直观的排序算法.它的工作原理如下.首先在未排序序列中找到最小(大)元素,存放到排序序列的起始 ...
- 八大排序算法之四选择排序—堆排序(Heap Sort)
堆排序是一种树形选择排序,是对直接选择排序的有效改进. 基本思想: 堆的定义如下:具有n个元素的序列(k1,k2,...,kn),当且仅当满足 时称之为堆.由堆的定义可以看出,堆顶元素(即第一个元素) ...
- 选择排序—堆排序(Heap Sort) 没看明白,不解释
堆排序是一种树形选择排序,是对直接选择排序的有效改进. 基本思想: 堆的定义如下:具有n个元素的序列(k1,k2,...,kn),当且仅当满足 时称之为堆.由堆的定义可以看出,堆顶元素(即第一个元素) ...
- 内部排序->选择排序->堆排序
文字描述 堆排序中,待排序数据同样可以用完全二叉树表示, 完全二叉树的所有非终端结点的值均不大于(或小于)其左.右孩子结点的值.由此,若序列{k1, k2, …, kn}是堆,则堆顶元素(或完全二叉树 ...
- 选择排序:直接选择排序&堆排序
上一篇中, 介绍了交换排序中的冒泡排序和快速排序, 那么这一篇就来介绍一下 选择排序和堆排序, 以及他们与快速排序的比较. 一.直接选择排序 1. 思想 在描述直接选择排序思想之前, 先来一个假设吧. ...
- 9, java数据结构和算法: 直接插入排序, 希尔排序, 简单选择排序, 堆排序, 冒泡排序,快速排序, 归并排序, 基数排序的分析和代码实现
内部排序: 就是使用内存空间来排序 外部排序: 就是数据量很大,需要借助外部存储(文件)来排序. 直接上代码: package com.lvcai; public class Sort { publi ...
- 选择排序---堆排序算法(Javascript版)
堆排序分为两个过程: 1.建堆. 堆实质上是完全二叉树,必须满足:树中任一非叶子结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字. 堆分为:大根堆和小根堆,升序排序采用大根堆,降序排序 ...
- IOS- 快速排序,冒泡排序,直接插入排序和折半插入排序,希尔排序,堆排序,直接选择排序
/*******************************快速排序 start**********************************///随即取 当前取第一个,首先找到第一个的位置 ...
- 基础排序算法,java实现(快速,冒泡,选择,堆排序,插入)
1.冒泡排序: (1)比较相邻的元素.如果第一个比第二个大,就交换他们两个. (2)外面再套个循环就行. 算法复杂度:O(N2) 不罗嗦,上代码: //冒泡排序(两两交换,外加一个外循环) pub ...
随机推荐
- HCNA配置接口IP地址
1.拓扑图 2.R1配置 The device is running! <Huawei>sys <Huawei>system-view Enter system view, r ...
- JavaScript 闭包的详细分享(三种创建方式)(附小实例)
JavaScript闭包的详细理解 一.原理:闭包函数--指有权访问私有函数里面的变量和对象还有方法等:通俗的讲就是突破私有函数的作用域,让函数外面能够使用函数里面的变量及方法. 1.第一种创建方式 ...
- 笨办法学Python(十九)
习题 19: 函数和变量 函数这个概念也许承载了太多的信息量,不过别担心.只要坚持做这些练习,对照上个练习中的检查点检查一遍这次的联系,你最终会明白这些内容的. 有一个你可能没有注意到的细节,我们现在 ...
- 如何处理Eclipse错误消息 The declared package does not match the expected package
我从github下载了一个开源项目后,导入到自己Eclipse之后,遇到了这个烦人的错误消息: The declared package "com.sap.smartService" ...
- P1424 小鱼的航程(改进版)
题目背景 原来的题目太简单,现改进让小鱼周末也休息,请已经做过重做该题. 题目描述 有一只小鱼,它上午游泳150公里,下午游泳100公里,晚上和周末都休息(实行双休日),假设从周x(1<=x&l ...
- 2017.11.2 JavaWeb----第六章 Servlet技术
JavaWeb ------第六章 Servlet技术 (1)在Web应用程序开发中,一般由JSP JavaBean技术和 Servlet技术的结合实现MVC开发模式.在MVC开发模式中将Web程序的 ...
- MongoDB在MFC下使用C++驱动编译错误的解决
.post p{text-indent: 2em;} 今天使用MongoDB的C++驱动,在编译连接的时候一直出现错误,显示的string_data.h下93行max宏的问题,可视其本身并不是调用ma ...
- django中的auth模块以及分页器
1.auth模块 auth模块是Django提供的标准权限管理系统,可以提供用户身份认证,和权限管理 auth可以和admin模块配合使用, 快速建立网站的管理系统 在INSTALLED_APPS中添 ...
- 使用JavaScript动态的绑定、解绑 a 标签的onclick事件,防止重复点击
页面上的 a 标签如下: <a class="more" style="cursor: pointer;" id="commentMore&qu ...
- tar工具(打包,压缩)
tar工具(打包,压缩)========================= tar打包工具 -c:表示建立一个tar包或者压缩文件包-x:表示解包或者解压缩-v:表示可视化-f: 后面跟文件名(即-f ...