Numpy

将字符型数据转为datetime

import numpy as np
f = np.array(['','2019-01-01','2019-01-02 01:01:01']) # 把f数组的元素类型改为日期类型
g = f.astype('M8[D]') # M8[Y] M8[M] M8[D]
print(g) # 时间戳(将日期转为数) 上面g的单位不同,这边的数值也不同
# g中的值距离1970年总共有多少天
h = g.astype('int32')
print(h)
print(h[] - h[])

生成ndarray数组

- np.random.random((2,2))
- np.ones((3,4))
- np.zeros((2,2), dtype='int32')
- np.arange(1,10)
- np.linspace(0,2,10)
- np.eye(3)
- np.full((3,3),7)

np.random.random((,))
Out[]:
array([[ 0.61705652, 0.48264423],
[ 0.69303143, 0.35004567]]) np.ones((,))
Out[]:
array([[ ., ., ., .],
[ ., ., ., .],
[ ., ., ., .]]) np.zeros((,), dtype='int32')
Out[]:
array([[, ],
[, ]]) np.arange(,)
Out[]: array([, , , , , , , , ]) np.linspace(,,)
Out[]:
array([ . , 0.22222222, 0.44444444, 0.66666667, 0.88888889,
1.11111111, 1.33333333, 1.55555556, 1.77777778, . ]) np.eye()
Out[]:
array([[ ., ., .],
[ ., ., .],
[ ., ., .]]) np.full((,),)
Out[]:
array([[, , ],
[, , ],
[, , ]])

Numpy 的random模块

# 使用numpy.random的normal函数生成符合二项分布的随机数
n =
# :期望值
# :标准差
# n:数字生成数量
x= np.random.normal(, , n)
y= np.random.normal(, , n)

ndarray数组对象的维度操作

视图变维:array.reshape() array.ravel()

- ravel() 是扁平化但是不复制,公用一个对象
- flatten() 是扁平化同时复制,会生成一个新对象并且返回

import numpy as np
a = np.arange(,)
# 视图变维使用的还是原始数组中的数据,如果修改了原始数组中的数据,那么新数组读到的数据也会发生变化。
b = a.reshape((,))
print(a,b)
a[] =
print(b)
c = b.ravel()
print(c)

复制变维(数据独立):flatten()

# 测试flatten
d=b.flatten().reshape((,))
d[] =
print(b)
print(d)

就地变维:直接修改数组维度,不返回新数组 resize() shape

d.resize(,,)
d.shape=(,)
print(d)

ndarray数组的切片操作

# 数组的切片与列表的切片参数类似
# 步长为正:默认从前往后切
# 步长为负:默认从后往前切
array[起始位置:终止位置:步长]
a = np.arange(,) # array([, , , , , , , , ])
a.resize(,) # array([[, , ],
# [, , ],
# [, , ]])
a[:, :] # 第2行到最后一行,所有列

ndarray数组的掩码操作

a = np.array([,,,,,,,])
f = np.array([True, False, True, False,False, True, False, True])
a[f]
Out[]: array([, , , ]) # 现在有数组的1-,我们现在要拿到数组中3的倍数或7的倍数
flag_a = a%==
flag_b = a%== flag_a
Out[]:
array([False, False, True, False, False, True, False, False, True,
False, False, False, False, False, ... False, False, False,
False, False, True, False, False, True, False, False, True, False], dtype=bool) flag = np.any([flag_a, flag_b], axis=) a[flag]
Out[]:
array([ , , , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , , ,
, , , , , , , , ])

多维数组的组合和拆分

垂直方向的操作:vstack() vsplit()

a = np.arange(,).reshape(,)
b = np.arange(,).reshape(,) a
Out[]:
array([[, , ],
[, , ]])
b
Out[]:
array([[ , , ],
[, , ]]) c = np.vstack((a,b))
c
Out[]:
array([[ , , ],
[ , , ],
[ , , ],
[, , ]]) a,b = np.vsplit(c, )

水平方向的操作:hstack() hsplit()

d = np.hstack((a,b))
a,b = np.hsplit(d, )

深度方向的操作:dstack() dsplit() 二维数组深度操作会变为三维数组,最后拆分也是三维数组

a
Out[]:
array([[, , ],
[, , ]]) b
Out[]:
array([[ , , ],
[, , ]]) e = np.dstack((a,b)) e
Out[]:
array([[[ , ],
[ , ],
[ , ]], [[ , ],
[ , ],
[ , ]]]) a,b = np.dsplit(e,)
a
Out[]:
array([[[],
[],
[]], [[],
[],
[]]])

多维数组组合与拆分的相关函数

# 根据axis所指定的轴向(,,)进行多维数组的组合
# 如果待组合的两个数组都是二维数组
# axis=:垂直方向
# axis=:水平方向
# 如果待组合的两个数组都是三维数组
# axis=:垂直方向
# axis=:水平方向
# axis=:深度方向
np.concatenate((a,b), axis=)
# 通过axis给定的轴向和拆分的份数对c进行拆分
np.split(c,,axis=)

长度不等的两个数组的组合操作

np.pad(ary, # 原始数组
pad_width=(,), # 补全方式(头部补0个,尾部补1个)
mode='constant', # 设置补全模式
constant_values=-) # 设置补全的默认值为- a = np.arange(,)
a
Out[]: array([, , , ])
# 返回一个新数组
np.pad(a, pad_width=(,),mode='constant',constant_values=-)
Out[]: array([ , , , , -, -, -])

简单的一维数组的组合方案

a = np.arange(,)
b = np.arange(,)
# 垂直方向叠加
np.row_stack((a,b))
# 水平方向叠加
np.column_stack((a,b))

Numpy数组的其他属性

1.shape 维度

2.dtype 元素类型

3.size 元素的个数

4.ndim 维度

5.itemsize 元素字节数

6.nbytes 数组的总字节数

7.real 复数数组的实部

8.imag 复数数组的虚部

9.T 数组对象的转置视图

10.flat 返回数组的扁平迭代器

a = np.arange(,)
a.resize(,,) a.size
Out[]: len(a)
Out[]: a.ndim
Out[]: a.shape
Out[]: (, , ) a.dtype
Out[]: dtype('int32') a.dtype.name
Out[]: 'int32' # ndarray数组的扁平迭代器
for i in a.flat:
print(i)
[e for e in a.flat]

数据分析第三篇:Numpy知识点的更多相关文章

  1. 【Python数据挖掘】第三篇--Numpy 和 可视化

    一.Numpy 数组是一系列同类型数据的集合,可以被非零整数进行索引,可以通过列表进行数组的初始化,数组也可以通过索引进行切片. Numpy提供了几乎全部的科学计算方式. # numpy 导入方式: ...

  2. 数据分析之路 第一篇 numpy

    第一篇 numpy 1.N维数组对象 :ndarray在Python中既然有了列表类型,为啥还要整个数组对象(类型)?那是因为:1.数组对象可以除去元素间运算所需要的循环,使得一维向量更像单个数据2. ...

  3. java面试必备知识点-上中下三篇写的很详细

    参考博客:写的还是相当的经典 http://www.cnblogs.com/absfree/p/5568849.html 上中下三篇写的很详细 http://blog.csdn.net/riverfl ...

  4. python数据挖掘第三篇-垃圾短信文本分类

    数据挖掘第三篇-文本分类 文本分类总体上包括8个步骤.数据探索分析->数据抽取->文本预处理->分词->去除停用词->文本向量化表示->分类器->模型评估.重 ...

  5. Spring第二篇和第三篇的补充【JavaConfig配置、c名称空间、装载集合、JavaConfig与XML组合】

    前言 在写完Spring第二和第三篇后,去读了Spring In Action这本书-发现有知识点要补充,知识点跨越了第二和第三篇,因此专门再开一篇博文来写- 通过java代码配置bean 由于Spr ...

  6. C#多线程编程(4)--异常处理+前三篇的总结

    本来是打算讲并行For和PLINQ的,但是我感觉前三篇我没有讲得很清晰.之前一直在看<CLR via C#>(后文简称CLR)的多线程部分,其中有些部分不是很明白,今天翻开<果壳中的 ...

  7. python数据分析---第04章 NumPy基础:数组和矢量计算

    NumPy(Numerical Python的简称)是Python数值计算最重要的基础包.大多数提供科学计算的包都是用NumPy的数组作为构建基础. NumPy的部分功能如下: ndarray,一个具 ...

  8. spring-cloud-kubernetes背后的三个关键知识点

    在<你好spring-cloud-kubernetes>一文中,对spring-cloud-kubernetes这个SpringCloud官方kubernetes服务框架有了基本了解,今天 ...

  9. 《VueRouter爬坑第三篇》-嵌套路由

    VueRouter系列的文章示例编写时,项目是使用vue-cli脚手架搭建. 项目搭建的步骤和项目目录专门写了一篇文章:点击这里进行传送 后续VueRouter系列的文章的示例编写均基于该项目环境. ...

随机推荐

  1. DuiVision开发教程(18)-弹出窗

    DuiVision的弹出窗体类CDlgPopup,是菜单.下拉列表等控件的父类,也能够单独使用,用于创建弹出窗体.弹出窗体默认是非激活状态下自己主动关闭,比如鼠标点击到弹出窗体外面的区域,弹出窗体就会 ...

  2. JavaScript的split()

    JavaScript split() 方法 JavaScript String 对象 定义和用法 split() 方法用于把一个字符串分割成字符串数组. 语法 stringObject.split(s ...

  3. spring+springMVC+hibernate整合

    首先我们要知道hibernate五大对象:,本实例通过深入的使用这五大对象和spring+springMVC相互结合,体会到框架的好处,提高我们的开发效率 Hibernate有五大核心接口,分别是:S ...

  4. MBA人物俞洪敏:亿万富翁的生活表

    我的智商非常一般,就是比别人勤奋.我的脑袋不属于特别笨的那种,但肯定也不是顶尖聪明的类型.在北大的50个同学当中,我的智商应该属于中下水平,这说明我不是顶尖高智商. 我的勤奋一般人跟不上.我平均每天工 ...

  5. APPLE ID随意转区到US或者HK.不需要信用卡

    看到论坛有封釉想去US 或者HK 的商店下载大陆商店没有的APP.(比如 Tumblr) 但是现在在手机上或者是网页管理apple id 更改地区,需要输入付款信息. 现在教大家利用旧版的icloud ...

  6. Mysql字符串截取函数

    今天建视图时,用到了MySQL中的字符串截取,很是方便. 感觉上MySQL的字符串函数截取字符,比用程序截取(如PHP或JAVA)来得强大,所以在这里做一个记录,希望对大家有用. 函数: 1.从左开始 ...

  7. python 基础 9.7 创建表

    一. 创建表 #/usr/bin/python #-*- coding:utf-8 -*- #@Time   :2017/11/22 18:05 #@Auther :liuzhenchuan #@Fi ...

  8. ubuntu14.04 desktop 32-bit kvm装windows xp

    经过这几天来的折腾,总算是在ubuntu14.04用kvm装上了xp, 看不少的的贴,也绕了不少的圈,总的来说,非常感谢CSDN上的"上善若水75",看着他写的一个分类" ...

  9. nginx学习之详细安装篇(二)

    1. 选择稳定版还是主线版 主线版:包含最新的功能和bug修复,但该版本可能会含有一些属于实验性的模块,同时可能会有新的bug,所以如果只是做测试使用,可以使用主线版. 稳定版:不包含最新的功能,但修 ...

  10. inux c编程:记录锁

    记录锁的功能:当一个进程正在读或修改文件的某个部分是,它可以阻止其他进程修改同一文件区.对于这个功能阐述我认为有三点要解释的: 记录锁不仅仅可以用来同步不同进程对同一文件的操作,还可以通过对同一文件加 ...