-----pLSA概率潜在语义分析、LDA潜在狄瑞雷克模型

一、pLSA(概率潜在语义分析)

  pLSA:    -------有过拟合问题,就是求D, Z, W

  pLSA由LSA发展过来,而早期LSA的实现主要是通过SVD分解。pLSA的模型图如下:

公式中的意义如下:

  具体可以参考2010龙星计划:机器学习中对应的主题模型那一讲

*****************************************************************************************************************

在论文《GoogleNews Personalization Scalable Online CF》一文中提级针对用户聚类,利用相似用户性信息计算喜欢的news。其中包含min-hash以及plsi,plsi是model-based 推荐算法,属于topic(aspect) model,其在NLP领域中用途很大。

引入:

在文本挖掘时,计算文档相似性是很基础的操作,通常,对文本进行分词,构建VSM,通过jaccard或者cosin计算距离或者相似性,这是基于corpus的思路,仅仅考虑词组,并未考虑文本的语义信息。针对下面情况,基于cropus很难处理:

*如果时间回到2006年,马云和杨致远的手还会握在一起吗

*阿里巴巴集团和雅虎就股权回购一事签署了最终协议

如果采用基于corpus的jaccard距离等算法,那么这两个文本的完全不相关,但是事实上,马云和阿里巴巴集团,杨致远和雅虎有着密切的联系,从语义上看,两者都和“阿里巴巴"有关系。

此外,另一个case:

*富士苹果真好,赶快买

*苹果四代真好,赶快买

从corpus上来看,两者非常相似,但是事实上,2个句子从语义上来讲,没有任何关系,一个是”水果“另一个是”手机"。

通过上面的例子,差不多也看出来topic model是什么以及解决什么问题。

概念:

topic model是针对文本隐含主题的建模方法,针对第一个case,马云对应的主题是阿里巴巴,阿里巴巴集团也隐含阿里巴巴主题,这样两个文本的主题匹配上,认为他们是相关的,针对第二个,分别针对水果以及手机主题,我们认为他们是不相关的。

究竟什么是主题?[接下来参考baidu搜索研发部官方博客中对语义主题的定义]主题就是一个概念、一个方面。它表现为一系列相关的词,能够代表这个主题。比如如果是”阿里巴巴“主题,那么”马云“”电子商务“等词会很高的频率出现,而设计到”腾讯“主题,那么“马化腾”“游戏”“QQ”会以较高的频率出现。如果用数学来描述一下的话,主题就是词汇表上词语的条件概率分布,与主题密切相关的词,条件概率p(w|z)越大。主题就像一个桶,装了出现频率很高的词语,这些词语和主题有很强的相关性,或者说这些词语定义了这个主题。同时,一个词语,可能来自于这个桶,也可能来自那个桶,比如“电子商务”可以来自“阿里巴巴”主题,也可以来自“京东“主题,所以一段文字往往包含多个主题,也就是说,一段文字不只有一个主题。

上面介绍了主题的概念,我们最为关心的是如何得到这些主题?这就是topic model要解决的问题。

define: d表示文档,w表示词语,z表示隐含的主题

其中 p(w|d)表示w在文档d中出现的概率,针对训练语料,对文本进行分词,w的频度除以文档所有词语的频度和,可以求出,对于未知数据,model用来计算该value.

        p(w|z)表示在给定主题情况下词语的出现的概率是多少,刻画词语和主题的相关程度。

        p(z|d)表示文档中每个主题出现的概率

所以主题模型就是
利用大量已知的p(w|d)词语-文档信息,训练出来主题-文档p(z|d)以及词语-主题p(w|z)。

plsa模型:

plsa是一种topic model,它属于生成模型(不是很理解),给定文档d后,以一定的概率选择d对应的主题z,然后以一定概率选择z中的词语w.

plsa提供了一种模型求解的方法,采用之前介绍的EM算法,EM算法在之前已经介绍,现在不作处理,直接利用EM信息对topic model进行求解。

 

其中Q是z的分布函数,表示在给定参数的情况下(w,d),z的后验概率。

根据EM算法,我们最后求解:

E-step :

M-step:

         

s.t.

符合上面约束的情况下,求解最大值,

         

其中θ代表期望估计的参数,p(wj|zk),p(zk|di),λz,λd

L(θ)的最大值,需要对各个参数求偏导,令其等于0,

首先求解p(wj|zk)对其求导后,

已知有约束,将带入可以求出:

最后可以求得参数:

基于同样的方式,求p(zk|di),求偏导后有:

利用约束,可以求得:

EM是迭代算法,所以针对 p(zk|dip(wj|zk)都需要给出一个初始值,而Q(zk|di,wj) 表示在参数已知(上一轮迭代结果)时Z的分布,所以每次迭代式Q(zk|di,wj) 是利用之前的结果直接算出来。

主题模型的用途:

1.计算文本的相似性,考虑到文本语义,更好的刻画文本相似性,避免多义词,同义词的影响

2.文本聚类,用户聚类(RS)

3.去除噪音,只保留最重要的主题,更好的刻画文档

plsa在推荐系统中的应用:

上面介绍的是文档和词语的关系,映射到推荐系统中,表示为用户和ITEM的关系,ITEM可以使网,视频等。

这样可以看出来描述的完全是同样的问题,求解p(s|u)=∑zp(s|z)p(z|u),模型参数为p(s|z)?p(z|u),里面上面的推导过程可以求得。

具体的可以参考:

Unsupervised learning by probabilisticlatent semantic analysis

Latent Semantic Models for collaborativefiltering

Google News Personalization Scalable OnlineCF

二、LDA(潜在狄瑞雷克模型)

  LDA:  主题模型,概率图如下:

  和pLSA不同的是LDA中假设了很多先验分布(Dirichlet),且一般参数的先验分布都假设为Dirichlet分布,其原因是共轭分布时先验概率和后验概率的形式相同。

【机器学习】主题模型(二):pLSA和LDA的更多相关文章

  1. 我是这样一步步理解--主题模型(Topic Model)、LDA

    1. LDA模型是什么 LDA可以分为以下5个步骤: 一个函数:gamma函数. 四个分布:二项分布.多项分布.beta分布.Dirichlet分布. 一个概念和一个理念:共轭先验和贝叶斯框架. 两个 ...

  2. LDA概率主题模型

    目录 LDA 主题模型 几个重要分布 模型 Unigram model Mixture of unigrams model PLSA模型 LDA 怎么确定LDA的topic个数? 如何用主题模型解决推 ...

  3. 理解 LDA 主题模型

    前言 gamma函数 0 整体把握LDA 1 gamma函数 beta分布 1 beta分布 2 Beta-Binomial 共轭 3 共轭先验分布 4 从beta分布推广到Dirichlet 分布 ...

  4. 通俗理解LDA主题模型

    通俗理解LDA主题模型 0 前言 印象中,最開始听说"LDA"这个名词,是缘于rickjin在2013年3月写的一个LDA科普系列,叫LDA数学八卦,我当时一直想看来着,记得还打印 ...

  5. 自然语言处理基础与实战(8)- 主题模型LDA理解与应用

    本文主要用于理解主题模型LDA(Latent Dirichlet Allocation)其背后的数学原理及其推导过程.本菇力求用简单的推理来论证LDA背后复杂的数学知识,苦于自身数学基础不够,因此文中 ...

  6. LDA( Latent Dirichlet Allocation)主题模型 学习报告

    1     问题描述 LDA由Blei, David M..Ng, Andrew Y..Jordan于2003年提出,是一种主题模型,它可以将文档集中每篇文档的主题以概率分布的形式给出,从而通过分析一 ...

  7. 通俗理解LDA主题模型(boss)

    0 前言 看完前面几篇简单的文章后,思路还是不清晰了,但是稍微理解了LDA,下面@Hcy开始详细进入boss篇.其中文章可以分为下述5个步骤: 一个函数:gamma函数 四个分布:二项分布.多项分布. ...

  8. NLP传统基础(2)---LDA主题模型---学习文档主题的概率分布(文本分类/聚类)

    一.简介 https://cloud.tencent.com/developer/article/1058777 1.LDA是一种主题模型 作用:可以将每篇文档的主题以概率分布的形式给出[给定一篇文档 ...

  9. 文本主题模型之潜在语义索引(LSI)

    在文本挖掘中,主题模型是比较特殊的一块,它的思想不同于我们常用的机器学习算法,因此这里我们需要专门来总结文本主题模型的算法.本文关注于潜在语义索引算法(LSI)的原理. 1. 文本主题模型的问题特点 ...

  10. 文本主题模型之非负矩阵分解(NMF)

    在文本主题模型之潜在语义索引(LSI)中,我们讲到LSI主题模型使用了奇异值分解,面临着高维度计算量太大的问题.这里我们就介绍另一种基于矩阵分解的主题模型:非负矩阵分解(NMF),它同样使用了矩阵分解 ...

随机推荐

  1. Centos7 配置yum源 安装epel

    一.什么是epel如果既想获得 RHEL 的高质量.高性能.高可靠性,又需要方便易用(关键是免费)的软件包更新功能,那么 Fedora Project 推出的 EPEL(Extra Packages ...

  2. vim 的visual可视模式

    一,在普通模式下面可以按v或者V进入可视模式下,选择内容: v 可以选择光标位置到光标结束的字符,包括行: V 选择光标位置行到光标结束的所在行的之间的所有行,选择的是个矩形: CTRL+v 选择块:

  3. java入门了解之快捷键

    IDE(Integrated Development Environment ): 集成开发环境,集合开发.运行.调试于一体的一个软件 Eclipse 是一个开放源代码的.基于Java的可扩展开发平台 ...

  4. Alembic Migrations

    Introduction The migrations in the alembic/versions contain the changes needed to migrate from older ...

  5. css sprite技巧详解

    1. [代码][CSS]代码 CSSSprites在国内很多人叫css精灵,是一种网页图片应用处理方式.它允许你将一个页面涉及到的所有零星图片都包含到一张大图中去,这样一来,当访问该页面时,载入的图片 ...

  6. js 格式华货币

    /*货币格式化*/ function formatMoney(num) { num = num.toString().replace(/\$|\,/g,''); if(isNaN(num)) { nu ...

  7. hbase_异常_02_hbase无法访问16010端口

    一.异常现象 上一个异常解决了之后,已经能正常启动hbase了,也能正常使用hbase shell  ,但是无法通过浏览器访问 16010端口. 二.异常原因 1.原因一 hbase 1.0 以后的版 ...

  8. Java_注解_00_资源贴

    1.Java注解教程:自定义注解示例,利用反射进行解析 2. (1)深入理解Java:注解(Annotation)基本概念 (2)深入理解Java:注解(Annotation)自定义注解入门 (3)深 ...

  9. codeforces 707A A. Brain's Photos(水题)

    题目链接: A. Brain's Photos 题意: 问是黑白还是彩色; 思路: 没有思路: AC代码: #include <iostream> #include <cstdio& ...

  10. java正则表达式匹配文本中想要的字符串

    需求:获取一个本地文件中所有符合 $[MAKE_PACKAGE] 格式的字符串,并输出到另一个文件中. public static void main(String[] args) throws Ex ...