大意: 给定序列, 要求实现区间加, 询问整个序列最长的先增后减的区间.

线段树维护左右两端递增,递减,先增后减的长度即可, 要注意严格递增, 合并时要注意相等的情况, 要注意相加会爆int.

#include <iostream>
#include <random>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#include <bitset>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 1e9+7, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
//head const int N = 3e5+10;
int n, m;
struct _ {
ll l,r,tag;
int len,La,Lb,Lab,Ra,Rb,Rab,ab;
_ () {}
_ (int x) {
l=r=x,len=La=Lb=Lab=Ra=Rb=Rab=ab=1,tag=0;
}
void upd(ll x) {
l+=x,r+=x,tag+=x;
}
_ operator + (const _ &rhs) const {
_ ret;
ret.l=l,ret.r=rhs.r;
ret.len=len+rhs.len;
ret.La = La+(La==len&&r<rhs.l?rhs.La:0);
ret.Lb = Lb+(Lb==len&&r>rhs.l?rhs.Lb:0);
ret.Lab = Lab;
if (La==len) {
if (r<rhs.l) ret.Lab=La+rhs.Lab;
else if (r>rhs.l) ret.Lab=La+rhs.Lb;
}
else if (Lab==len&&r>rhs.l) ret.Lab=Lab+rhs.Lb;
ret.Ra = rhs.Ra+(rhs.Ra==rhs.len&&r<rhs.l?Ra:0);
ret.Rb = rhs.Rb+(rhs.Rb==rhs.len&&r>rhs.l?Rb:0);
ret.Rab = rhs.Rab;
if (rhs.Rb==rhs.len) {
if (r<rhs.l) ret.Rab=rhs.Rb+Ra;
else if (r>rhs.l) ret.Rab=rhs.Rb+Rab;
}
else if (rhs.Rab==rhs.len&&r<rhs.l) ret.Rab=rhs.Rab+Ra;
ret.ab = max(ab,rhs.ab);
if (r!=rhs.l) ret.ab=max(ret.ab,Ra+rhs.Lb);
if (r<rhs.l) ret.ab=max(ret.ab,Ra+rhs.Lab);
if (r>rhs.l) ret.ab=max(ret.ab,Rab+rhs.Lb);
ret.tag = 0;
return ret;
}
} tr[N<<2];
void build(int o, int l, int r) {
if (l==r) tr[o]=_(rd());
else build(ls),build(rs),tr[o]=tr[lc]+tr[rc];
}
void pd(int o) {
if (tr[o].tag) {
tr[lc].upd(tr[o].tag);
tr[rc].upd(tr[o].tag);
tr[o].tag=0;
}
}
void update(int o, int l, int r, int ql, int qr, int v) {
if (ql<=l&&r<=qr) return tr[o].upd(v);
pd(o);
if (mid>=ql) update(ls,ql,qr,v);
if (mid<qr) update(rs,ql,qr,v);
tr[o]=tr[lc]+tr[rc];
}
int main() {
build(1,1,n=rd());
m=rd();
REP(i,1,m) {
int l=rd(),r=rd(),d=rd();
update(1,1,n,l,r,d);
printf("%d\n", tr[1].ab);
}
}

Alyona and towers CodeForces - 739C (线段树)的更多相关文章

  1. B - Alyona and towers CodeForces - 739C

    链接: https://vjudge.net/contest/202699#problem/B 题意: 给出一个序列,要支持区间加和操作 求其中最长的区间,该区间内的元素满足(ai<ai+1&l ...

  2. Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论

    Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论 题意 给你一段数,然后小明去猜某一区间内的gcd,这里不一定是准确值,如果在这个区间内改变 ...

  3. Alyona and a tree CodeForces - 739B (线段树合并)

    大意: 给定有根树, 每个点$x$有权值$a_x$, 对于每个点$x$, 求出$x$子树内所有点$y$, 需要满足$dist(x,y)<=a_y$. 刚开始想错了, 直接打线段树合并了..... ...

  4. Codeforces Round #424 (Div. 2, rated, based on VK Cup Finals) Problem E (Codeforces 831E) - 线段树 - 树状数组

    Vasily has a deck of cards consisting of n cards. There is an integer on each of the cards, this int ...

  5. Codeforces 938G 线段树分治 线性基 可撤销并查集

    Codeforces 938G Shortest Path Queries 一张连通图,三种操作 1.给x和y之间加上边权为d的边,保证不会产生重边 2.删除x和y之间的边,保证此边之前存在 3.询问 ...

  6. codeforces 1136E 线段树

    codeforces 1136E: 题意:给你一个长度为n的序列a和长度为n-1的序列k,序列a在任何时候都满足如下性质,a[i+1]>=ai+ki,如果更新后a[i+1]<ai+ki了, ...

  7. Z - New Year Tree CodeForces - 620E 线段树 区间种类 bitset

    Z - New Year Tree CodeForces - 620E 这个题目还没有写,先想想思路,我觉得这个题目应该可以用bitset, 首先这个肯定是用dfs序把这个树转化成线段树,也就是二叉树 ...

  8. D - The Bakery CodeForces - 834D 线段树优化dp···

    D - The Bakery CodeForces - 834D 这个题目好难啊,我理解了好久,都没有怎么理解好, 这种线段树优化dp,感觉还是很难的. 直接说思路吧,说不清楚就看代码吧. 这个题目转 ...

  9. B - Legacy CodeForces - 787D 线段树优化建图+dij最短路 基本套路

    B - Legacy CodeForces - 787D 这个题目开始看过去还是很简单的,就是一个最短路,但是这个最短路的建图没有那么简单,因为直接的普通建图边太多了,肯定会超时的,所以要用线段树来优 ...

随机推荐

  1. RabbitMQ 四种Exchange

    AMQP协议中的核心思想就是生产者和消费者隔离,生产者从不直接将消息发送给队列.生产者通常不知道是否一个消息会被发送到队列中,只是将消息发送到一个交换机.先由Exchange来接收,然后Exchang ...

  2. HTML5的离线应用

    参考:有趣的HTML5:离线存储——segmentfault HTML5的离线存储 简介 HTML5提供了很多新的功能以及相应的接口,离线存储就是其中的一个.通过浏览器访问Web App需要联网发送请 ...

  3. SpringMVC 之URL请求到Action的映射(1)

    URL路径映射 1.1.对一个action配置多个URL映射: @RequestMapping(value={"/index", "/hello"}, meth ...

  4. Python-使用unrar库时Couldn't find path to unrar library的解决办法

    在Pycharm安装完unrar后,还要安装rar官方的库 不然运行的时候会抛出Couldn't find path to unrar library的错误 Windows: 下载rarlib的库文件 ...

  5. typescript相关知识点总结

    本文讲解typescript语法 由于js语法本身的混乱,再加上目前框架的割据,导致typescript用起来没有一致性,本文尽量总结实际开发中可能会用到的知识点 目录 数据类型 类型断言 duck ...

  6. jdbcTemplate学习(二)

    前面讲了增加.删除.更新操作,这节讲一下查询. 查询操作: (一)查询一个值(不需要注入参数) queryForObject(String sql, Class<T> requiredTy ...

  7. 使用网络用户命令行工具的/passwordreq:yes

    提示:"新建域时,本地administrator帐户将成为域administrator账户.无法新建域,因为本地administrator账户密码不符合要求.目前,本地administrat ...

  8. Android中pull解析XML文件的简单使用

    首先,android中解析XML文件有三种方式,dom,sax,pull 这里先讲pull,稍候会说SAX和DOM pull是一种事件驱动的xml解析方式,不需要解析整个文档,返回的值是数值型,是推荐 ...

  9. c++11: thread_local

    thread_local变量是C++ 11新引入的一种存储类型.它会影响变量的存储周期(Storage duration),C++中有4种存储周期: automatic static dynamic ...

  10. 初阶html学习总结(一)(转)

    一:颜色代码 如果你想使用某种颜色,取得它的颜色值即可.比如,您想改变某些文字的颜色,您可以使用下面的代码:<font color=#ffc060 size=2>改变#符号后的代码即可改变 ...