题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3994

推导过程和这里一样:https://www.cnblogs.com/MashiroSky/p/6365020.html

不用取模但注意开 long long 。

代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=5e4+;
int cnt,pri[xn];
ll f[xn],mu[xn];
bool vis[xn];
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
void init()
{
int mx=5e4; mu[]=;
for(int i=;i<=mx;i++)
{
if(!vis[i])pri[++cnt]=i,mu[i]=-;
for(int j=;j<=cnt&&(ll)i*pri[j]<=mx;j++)
{
vis[i*pri[j]]=;
if(i%pri[j])mu[i*pri[j]]=-mu[i];
else break;
}
}
for(int i=;i<=mx;i++)mu[i]+=mu[i-];
for(int n=;n<=mx;n++)
for(int i=,j;i<=n;i=j+)
{
j=n/(n/i);
f[n]+=(ll)(n/i)*(j-i+);//
}
}
int main()
{
int T=rd(); init();
while(T--)
{
int n=rd(),m=rd(); int mn=min(n,m); ll ans=;//
for(int i=,j;i<=mn;i=j+)
{
j=min(n/(n/i),m/(m/i));
ans+=(mu[j]-mu[i-])*f[n/i]*f[m/i];
}
printf("%lld\n",ans);
}
return ;
}

bzoj 3994 约数个数和 —— 反演+数论分块的更多相关文章

  1. BZOJ 3994 约数个数和

    Description 设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求\[\sum_{i=1}^{N}\sum_{j=1}^{M}d(ij)\]. Input 输入文件包含多组测试数 ...

  2. [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)

    [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...

  3. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  4. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

  5. bzoj 3994 [SDOI2015]约数个数和——反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3994 \( d(i*j)=\sum\limits_{x|i}\sum\limits_{y|j ...

  6. bzoj 3309 DZY Loves Math —— 莫比乌斯反演+数论分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 凭着上课所讲和与 Narh 讨论推出式子来: 竟然是第一次写数论分块!所以迷惑了半天: ...

  7. 【BZOJ2820】YY的GCD(莫比乌斯反演 数论分块)

    题目链接 大意 给定多组\(N\),\(M\),求\(1\le x\le N,1\le y\le M\)并且\(Gcd(x, y)\)为质数的\((x, y)\)有多少对. 思路 我们设\(f(i)\ ...

  8. BZOJ 2956 模积和 (数学推导+数论分块)

    手动博客搬家: 本文发表于20170223 16:47:26, 原地址https://blog.csdn.net/suncongbo/article/details/79354835 题目链接: ht ...

  9. BZOJ2301/LG2522 「HAOI2011」Problem B 莫比乌斯反演 数论分块

    问题描述 BZOJ2301 LG2522 积性函数 若函数 \(f(x)\) 满足对于任意两个最大公约数为 \(1\) 的数 \(m,n\) ,有 \(f(mn)=f(m) \times f(n)\) ...

随机推荐

  1. 解决Eclipse的Team菜单中没有SVN选项的问题

    我们想使用SVN向SVN服务器上传代码,但Eclipse默认情况下却没有SVN选项,如下图所示. 默认只有GIT,如下图所示. 那么,我们怎么解决这个问题呢? 第一步:如下图所示. 第二步:在&quo ...

  2. Javaweb基础--->过滤器filter(转发)

    一.Filter简介 Filter也称之为过滤器,它是Servlet技术中最激动人心的技术,WEB开发人员通过Filter技术,对web服务器管理的所有web资源:例如Jsp, Servlet, 静态 ...

  3. 关于VMAX中存储资源池(SRP)

    Storage Resource Pool中的相关元素 SRP由一个或多个数据池组成,这些数据池包含了预配置的数据(或TDAT)设备,可为创建和呈现给主机与应用程序的精简设备(TDEVS) 提供存储. ...

  4. 全自动安装mongoDB数据库的shell脚本

    最近在研究mongoDB数据库,写了个全自动安装mongoDB数据库的shell脚本,仅供参考,欢迎拍砖,内容如下: #!/bin/bash # shell的执行选项: # -n 只读取shell脚本 ...

  5. 每天一个Linux命令(12)more命令

    more命令是一个基于vi编辑器文本过滤器,它以全屏幕的方式按页显示文本文件的内容,支持vi中的关键字定位操作. 该命令一次显示一屏文本,满屏后停下来,并且在屏幕的底部出现一个提示信息,给出至今己显示 ...

  6. python 删除文件中指定行

    代码适用情况:xml文件,循环出现某几行,根据这几行中的某个字段删掉这几行这段代码的作用删除jenkins中config.xml中在自动生成pipline报错的时的回滚 start = '<se ...

  7. ubuntu14.04 在自带python2.7上安装python3.3.5 可以用但是有问题

    一开始写的时候并没有发现这么安装有问题,后来发现问题也不想删了,当个教训,如果想安装从python自带版本换别的版本的话就别接着看了,这么安装有问题.需要进行配置,但是我还不会.其实下面只是差了一步配 ...

  8. python3 mysql 多表查询

    python3 mysql 多表查询 一.准备表 创建二张表: company.employee company.department #建表 create table department( id ...

  9. python实现并绘制 sigmoid函数,tanh函数,ReLU函数,PReLU函数

    Python绘制正余弦函数图像 # -*- coding:utf-8 -*- from matplotlib import pyplot as plt import numpy as np impor ...

  10. POJ-3126 暑假集训-搜索进阶F题

     http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82828#problem/F 经验就是要认真细心,要深刻理解.num #include& ...