题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3994

推导过程和这里一样:https://www.cnblogs.com/MashiroSky/p/6365020.html

不用取模但注意开 long long 。

代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=5e4+;
int cnt,pri[xn];
ll f[xn],mu[xn];
bool vis[xn];
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
void init()
{
int mx=5e4; mu[]=;
for(int i=;i<=mx;i++)
{
if(!vis[i])pri[++cnt]=i,mu[i]=-;
for(int j=;j<=cnt&&(ll)i*pri[j]<=mx;j++)
{
vis[i*pri[j]]=;
if(i%pri[j])mu[i*pri[j]]=-mu[i];
else break;
}
}
for(int i=;i<=mx;i++)mu[i]+=mu[i-];
for(int n=;n<=mx;n++)
for(int i=,j;i<=n;i=j+)
{
j=n/(n/i);
f[n]+=(ll)(n/i)*(j-i+);//
}
}
int main()
{
int T=rd(); init();
while(T--)
{
int n=rd(),m=rd(); int mn=min(n,m); ll ans=;//
for(int i=,j;i<=mn;i=j+)
{
j=min(n/(n/i),m/(m/i));
ans+=(mu[j]-mu[i-])*f[n/i]*f[m/i];
}
printf("%lld\n",ans);
}
return ;
}

bzoj 3994 约数个数和 —— 反演+数论分块的更多相关文章

  1. BZOJ 3994 约数个数和

    Description 设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求\[\sum_{i=1}^{N}\sum_{j=1}^{M}d(ij)\]. Input 输入文件包含多组测试数 ...

  2. [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)

    [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...

  3. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  4. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

  5. bzoj 3994 [SDOI2015]约数个数和——反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3994 \( d(i*j)=\sum\limits_{x|i}\sum\limits_{y|j ...

  6. bzoj 3309 DZY Loves Math —— 莫比乌斯反演+数论分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 凭着上课所讲和与 Narh 讨论推出式子来: 竟然是第一次写数论分块!所以迷惑了半天: ...

  7. 【BZOJ2820】YY的GCD(莫比乌斯反演 数论分块)

    题目链接 大意 给定多组\(N\),\(M\),求\(1\le x\le N,1\le y\le M\)并且\(Gcd(x, y)\)为质数的\((x, y)\)有多少对. 思路 我们设\(f(i)\ ...

  8. BZOJ 2956 模积和 (数学推导+数论分块)

    手动博客搬家: 本文发表于20170223 16:47:26, 原地址https://blog.csdn.net/suncongbo/article/details/79354835 题目链接: ht ...

  9. BZOJ2301/LG2522 「HAOI2011」Problem B 莫比乌斯反演 数论分块

    问题描述 BZOJ2301 LG2522 积性函数 若函数 \(f(x)\) 满足对于任意两个最大公约数为 \(1\) 的数 \(m,n\) ,有 \(f(mn)=f(m) \times f(n)\) ...

随机推荐

  1. git克隆远程分支

    $ git branch –r 查看远程branch信息 $ git checkout origin/dev检出远程分支 $ git branch -a 查看所有分支,包括本地和远程 可以使用chec ...

  2. BAPI LIST

    [转自 http://blog.csdn.net/minsenwu/article/details/8432081] 库存管理BAPI 库存: 1. BAPI_MATERIAL_AVAILABILIT ...

  3. Apache Shiro 使用手册(二)Shiro 认证(转发:http://kdboy.iteye.com/blog/1154652)

    认证就是验证用户身份的过程.在认证过程中,用户需要提交实体信息(Principals)和凭据信息(Credentials)以检验用户是否合法.最常见的“实体/凭证”组合便是“用户名/密码”组合. 一. ...

  4. 第6条:在单次切片操作内,不要同时指定start、end和stride

    核心知识点: 1.使用负步进可以反转取值字符串及ASCII. 2.stride最好不要与start和end用在一起,会降低代码可读性. 除了基本的切片操作之外,python还提供了somelist[s ...

  5. 自定义jsonp请求数据

    整理代码的时候发现一个以前写的实现jsonp请求方法,放在这里分享一下~ 原理:通过js新建script dom对象,利用src携带参数和callback方法,将数据发送至后端,需要后端配合将数据放在 ...

  6. cookie补充

    之前写cookie中关于突破同源策略共享cookie说的比较含糊,此次来详细说明一下: ## 首先说一下cookie的path和domain这 两个属性值 path: path表示的此条cookie是 ...

  7. static_cast, dynamic_cast, const_cast 三种类型转化的区别

    强制转化四种类型可能很多人都常常忽略就象我一样,但是有时还是比较有用的.不了解的建议看看,一些机制我也不是十分了解,只是将一些用法写出来让大家看看.                           ...

  8. CV2图像操作

    一.读入图像使用函数cv2.imread(filepath,flags)读入一副图片filepath:要读入图片的完整路径flags:读入图片的标志 cv2.IMREAD_COLOR:默认参数,读入一 ...

  9. invalid constant type: 18

    javassist 3.18以下的版本不支持在JDK1.8下运行

  10. C#--父子页面传值、刷新(showModalDialog)

    父页面: var obj = new Object(); obj.name="name"; var rtnValue=window.showModalDialog("ch ...