hdu 5381 The sum of gcd 2015多校联合训练赛#8莫队算法
The sum of gcd
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 23 Accepted Submission(s): 4
length of A is n
Let f(l,r)=∑ri=l∑rj=igcd(ai,ai+1....aj)
First line has one integers n
Second line has n integers Ai
Third line has one integers Q,the
number of questions
Next there are Q lines,each line has two integers l,r
1≤T≤3
1≤n,Q≤104
1≤ai≤109
1≤l<r≤n
2
5
1 2 3 4 5
3
1 3
2 3
1 4
4
4 2 6 9
3
1 3
2 4
2 3
9
6
16
18
23
10
求一个区间内随意子区间的gcd之和。
分析:
对于区间[l,r]求gcd之和的复杂度是nlog(n)的
::
如果处理了[l,r]的结果,那么对于[l,r+1]。能产生的新的子区间为[r-l+1]个。怎样合并?
由于增加r+1,那么[L,r+1],(l<=L<=r)必定都是经过r位置的。知道r与之前每一个位置的gcd。
用num[r+1]与这些gcd值,做gcd得到新的gcd值,就是全部新子区间的gcd结果。对于每一个gcd乘以相应的
区间个数就可以。
当然越往左。gcd就会越小,而且最多出现log个gcd值。把同样的gcd合并就能降低运算量。
然后新增加的数自己能够成为一个区间,增加答案中。
处理的复杂度是nlog的,由于分块了,
长度为n的最多sqrt(n)段,复杂度是nlog(n)*sqrt(n)
在块内。长度是sqrt(n)且最多次计算。全部是qlog(n)*sqrt(n)==================(log(n)是gcd的种类数)
如今处理合并两段了:
由于分成左右两段,例如以下
原序列:1 1 1 2 2 2 4 4 4| 4 4 4 2 2 2 1 1 1 (|是分隔位置)
gcd:1 1 1 2 2 2 4 4 4 | 4 4 4 2 2 2 1 1 1
gcd计算的该点到切割位置的路径的gcd,由于合并肯定是须要经过切割位置的!
显然能够知道gcd的种类仅仅有 log(n)个。对于左边的每一个gcd和右边的每一个gcd做一下gcd函数。然后乘以左边该段
的长度*右边该段的长度。如样例就是
gcd(1,1)*3*3+gcd(1,2)*3*3 + gcd(1,4)*3*3)...........+....
怎样计算得到每一个gcd相应的区间个数呢?
能够知道从分隔线到两边的gcd是递减的。假设g是[l,r]的gcd,那么对于[l-1,r]仅仅要gcd(g,num[l-1])就计算出来了
然后得到的gcd假设与g同样就和并。否则增加一个新值。
复杂度分析:
对于每段,求出全部gcd和个数是o(n)的。
长的一段最多求sqrt(n)次。是n*sqrt(n)的。短的是sqrt(n)*q次
合并时复杂度是q*log(n)*log(n)的,所以是 O(sqrt(n)*n+q*sqrt(n)+q*log(n)*log(n))
接下来看代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
#define maxn 20001
#define ll long long int gcd(int a,int b){
if(b == 0) return a;
return gcd(b,a%b);
} ll ans[maxn];
struct Node{
int l,r,id;
};
Node que[maxn]; int length;//分块排序函数
int comp(Node a,Node b){
if(a.l / length == b.l / length)
return a.r < b.r;
return a.l /length < b.l/length;
}
int num[maxn]; struct Point{
int g,num;
Point(int _g=0,int _n=0):g(_g),num(_n){}
};
vector<Point> lgcd;
vector<Point> ltrgcd;
vector<Point> rgcd;
vector<Point> rtlgcd; int main(){
int t,n,q;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i = 0;i < n; i++)
scanf("%d",num+i);
scanf("%d",&q);
for(int i = 0;i < q; i++){
scanf("%d%d",&que[i].l,&que[i].r);
que[i].id = i;
que[i].l--,que[i].r--;
} for(length = 1; length * length < n; length++);
sort(que,que+q,comp);//按快排序,同一个块内r从小到大排序 memset(ans,0,sizeof(ans));
lgcd.clear();
rgcd.clear();
ltrgcd.clear();
rtlgcd.clear(); int RR = -1,kuai = -1,j,k,l,LL;
ll res = 0,resl = 0;
Point a;
for(int i = 0;i < q; i++){ 处理每一个询问
if(kuai != que[i].l/length){//新块。所以长的一段要重头開始处理
kuai = que[i].l/length;
rtlgcd.clear();
rgcd.clear();
RR = kuai*length+length-1;
res = 0;
}
while(RR < que[i].r){
RR++;//处理分隔线到RR的gcd之和。 for( j = 0;j < rgcd.size(); j++){
rgcd[j].g = gcd(rgcd[j].g,num[RR]);
res += (ll)rgcd[j].g*rgcd[j].num;
}
rgcd.push_back(Point(num[RR],1));
res += num[RR];
for(j = 0,k = 1;k<rgcd.size();k++){
if(rgcd[j].g == rgcd[k].g){
rgcd[j].num += rgcd[k].num;
}
else {
j++;
rgcd[j] = rgcd[k];
}
}
while(rgcd.size() > j+1) rgcd.pop_back();//合并同样的gcd
//处理分隔线到每一个RR的gcd个数
if(rtlgcd.size() == 0)
rtlgcd.push_back(Point(num[RR],1));
else {
k = rtlgcd.size()-1;//仅仅需比較最小的那个gcd就可以。即最右边计算得到的gcd
a.g = gcd(rtlgcd[k].g,num[RR]);
a.num = 1;
if(a.g == rtlgcd[k].g)
rtlgcd[k].num++;
else rtlgcd.push_back(a);
}
} LL = kuai*length+length-1;
lgcd.clear();
ltrgcd.clear();
resl = 0;//左边的处理与右边的一样
LL = min(LL,que[i].r);
for(;LL >= que[i].l; LL--){
for(j = 0;j < lgcd.size(); j++){
lgcd[j].g = gcd(lgcd[j].g,num[LL]);
resl += (ll)lgcd[j].g*lgcd[j].num;
}
lgcd.push_back(Point(num[LL],1));
resl += num[LL];
for(j = 0,k=1;k<lgcd.size();k++){
if(lgcd[j].g == lgcd[k].g){
lgcd[j].num += lgcd[k].num;
}
else {
j++;
lgcd[j] = lgcd[k];
}
}
while(lgcd.size() > j+1) lgcd.pop_back(); if(ltrgcd.size() == 0){
ltrgcd.push_back(Point(num[LL],1));
}
else {
k = ltrgcd.size()-1;
a.g = gcd(ltrgcd[k].g,num[LL]);
a.num = 1;
if(a.g == ltrgcd[k].g)
ltrgcd[k].num++;
else ltrgcd.push_back(a);
}
}//合并两个区间
ans[que[i].id] = res + resl;
int id = que[i].id,gg;
for(j = 0;j < ltrgcd.size(); j++){
gg = ltrgcd[j].g;
for(k = 0;k < rtlgcd.size(); k++){
gg = gcd(gg,rtlgcd[k].g);
ans[id] += (ll)gg*ltrgcd[j].num*rtlgcd[k].num;
}
}
}
for(int i = 0;i < q; i++){
printf("%I64d\n",ans[i]);
}
}
return 0;
}
hdu 5381 The sum of gcd 2015多校联合训练赛#8莫队算法的更多相关文章
- hdu 5358 First One 2015多校联合训练赛#6 枚举
First One Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Tota ...
- HDU 5358(2015多校联合训练赛第六场1006) First One (区间合并+常数优化)
pid=5358">HDU 5358 题意: 求∑i=1n∑j=in(⌊log2S(i,j)⌋+1)∗(i+j). 思路: S(i,j) < 10^10 & ...
- hdu 5361 2015多校联合训练赛#6 最短路
In Touch Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Total ...
- 2015多校联合训练赛 hdu 5308 I Wanna Become A 24-Point Master 2015 Multi-University Training Contest 2 构造题
I Wanna Become A 24-Point Master Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 ...
- 2015多校联合训练赛hdu 5301 Buildings 2015 Multi-University Training Contest 2 简单题
Buildings Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Tota ...
- HDU 5371 (2015多校联合训练赛第七场1003)Hotaru's problem(manacher+二分/枚举)
pid=5371">HDU 5371 题意: 定义一个序列为N序列:这个序列按分作三部分,第一部分与第三部分同样,第一部分与第二部分对称. 如今给你一个长为n(n<10^5)的序 ...
- 2015多校联合训练赛 Training Contest 4 1008
构造题: 比赛的时候只想到:前面一样的数,后面 是类似1,2,3,4,5,6....t这 既是:t+1,t+1...,1,2,3,...t t+1的数目 可能 很多, 题解时YY出一个N 然后对N ...
- hdu 5381 The sum of gcd(线段树+gcd)
题目链接:hdu 5381 The sum of gcd 将查询离线处理,依照r排序,然后从左向右处理每一个A[i],碰到查询时处理.用线段树维护.每一个节点表示从[l,i]中以l为起始的区间gcd总 ...
- hdu 5381 The sum of gcd
知道对于一个数列,如果以x为左(右)端点,往右走,则最多会有log(a[x])个不同的gcd,并且有递减性 所以会分成log段,每一段的gcd相同 那我们可以预处理出对于每一个位置,以这个位置为左端点 ...
随机推荐
- apache2.2 到 2.4后配置文件需要更改的部分
参考: http://www.dotblogs.com.tw/maple ... e24_httpd_conf.aspx 1. 访问控制2.2 的时候Order deny,allowDeny fro ...
- wsdl2java在mac中点配置
1.打开终端,默认是用户目录,输入以下命令: ls -a 显示隐藏文件 2.打开.bash_profile,输入以下命令 open .bash_profile 配置JAVA_HOME,AXIS2_HO ...
- 2017年开发者生态报告:Python最多人想尝试的编程语言(转载)
在过去的十年里,Python 语言获得了最大的增长幅度,已经成为最受欢迎的程序设计语言之一.JetBrains 近日发布了 2017 开发者生态报告,该报告包含开发人员对 11 种编程语言以及数据库和 ...
- wget jdk
wget --no-check-certificate --no-cookies --header "Cookie: oraclelicense=accept-securebackup-co ...
- Elasticsearch教程(六) elasticsearch Client创建
Elasticsearch 创建Client有几种方式. 首先在 Elasticsearch 的配置文件 elasticsearch.yml中.定义cluster.name.如下: cluster ...
- [Angular] Dynamic component rendering by using *ngComponentOutlet
Let's say you want to rending some component based on condition, for example a Tabs component. Insid ...
- 使用Junit4对web项目进行测试(一)Junit初配置
Junit测试用例不是用来证明你是对的,而是用来证明你没有错 1.功能 -在项目未在浏览器运行之前对获得的结果和预期的结果进行比较调试,减少BUG和发布时的修复工作 2.测试类和代码类应分开存放. ...
- Linux Oracle数据库的安装
// 注释 # root用户 $oracle用户 1. 关闭安全措施 # chkconfig iptables off // 永久关闭防火墙 # serviceiptables stop // ...
- InnoDB事务和锁
InnoDB支持事务,MyISAM不支持事务. 一.事务的基本特性 ACID特性 1.原子性(Atomicity):事务是一个原子操作单元,其对数据的修改,要么全都执行,要么全都不执行. 2.一致性( ...
- spring拦截器不拦截方法名原因
开发一个基于注解的登录拦截器,遇到拦截器只能拦截controller不能拦截到具体的方法名,这样拦截器就完全没用,经过仔细摸索,DefaultAnnotationHandlerMapping和Anno ...