本质上是递归遍历左右后在与根节点做判断,本质上是后序遍历

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

给你一个二叉树,判断他是否是个有效的二叉查找树(BST)。

假定一个BST树按照下面的内容定义:

  • 左子树的节点的值都小于父节点。
  • 右子树的节点的值都大于父节点。
  • 左子树和右子树都得是合法的而二叉查找树。

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Given a binary tree, determine if it is a valid binary search tree (BST).

Assume a BST is defined as follows:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than the node's key.
  • Both the left and right subtrees must also be binary search trees.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
test.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
 
#include <iostream>
#include <cstdio>
#include <stack>
#include <vector>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
bool islessthanroot(TreeNode *left, int val)
{
    if(left == NULL)
    {
        return true;
    }
    if(left->val >= val)
    {
        return false;
    }
    return islessthanroot(left->left, val) && islessthanroot(left->right, val);
}

bool islargethanroot(TreeNode *right, int val)
{
    if(right == NULL)
    {
        return true;
    }
    if(right->val <= val)
    {
        return false;
    }
    return islargethanroot(right->left, val) && islargethanroot(right->right, val);
}

bool isValidBST(TreeNode *root)
{
    if(root == NULL)
    {
        return true;
    }
    if(islessthanroot(root->left, root->val) && islargethanroot(root->right, root->val))
    {
        return isValidBST(root->left) && isValidBST(root->right);
    }
    else
    {
        return false;
    }
}

// 树中结点含有分叉,
//                  6
//              /       \
//             2         7
//           /   \
//          1     4
//               / \
//              3   5
int main()
{
    TreeNode *pNodeA1 = CreateBinaryTreeNode(6);
    TreeNode *pNodeA2 = CreateBinaryTreeNode(2);
    TreeNode *pNodeA3 = CreateBinaryTreeNode(7);
    TreeNode *pNodeA4 = CreateBinaryTreeNode(1);
    TreeNode *pNodeA5 = CreateBinaryTreeNode(4);
    TreeNode *pNodeA6 = CreateBinaryTreeNode(3);
    TreeNode *pNodeA7 = CreateBinaryTreeNode(5);

ConnectTreeNodes(pNodeA1, pNodeA2, pNodeA3);
    ConnectTreeNodes(pNodeA2, pNodeA4, pNodeA5);
    ConnectTreeNodes(pNodeA5, pNodeA6, pNodeA7);

bool ans = isValidBST(pNodeA1);

if (ans == true)
    {
        cout << "Valid BST" << endl;
    }
    else
    {
        cout << "Not Valid BST" << endl;
    }

DestroyTree(pNodeA1);
    return 0;
}


结果输出:
Valid BST
BinaryTree.h:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 
#ifndef _BINARY_TREE_H_
#define _BINARY_TREE_H_

struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

TreeNode *CreateBinaryTreeNode(int value);
void ConnectTreeNodes(TreeNode *pParent,
                      TreeNode *pLeft, TreeNode *pRight);
void PrintTreeNode(TreeNode *pNode);
void PrintTree(TreeNode *pRoot);
void DestroyTree(TreeNode *pRoot);

#endif /*_BINARY_TREE_H_*/

BinaryTree.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
 
#include <iostream>
#include <cstdio>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */

//创建结点
TreeNode *CreateBinaryTreeNode(int value)
{
    TreeNode *pNode = new TreeNode(value);

return pNode;
}

//连接结点
void ConnectTreeNodes(TreeNode *pParent, TreeNode *pLeft, TreeNode *pRight)
{
    if(pParent != NULL)
    {
        pParent->left = pLeft;
        pParent->right = pRight;
    }
}

//打印节点内容以及左右子结点内容
void PrintTreeNode(TreeNode *pNode)
{
    if(pNode != NULL)
    {
        printf("value of this node is: %d\n", pNode->val);

if(pNode->left != NULL)
            printf("value of its left child is: %d.\n", pNode->left->val);
        else
            printf("left child is null.\n");

if(pNode->right != NULL)
            printf("value of its right child is: %d.\n", pNode->right->val);
        else
            printf("right child is null.\n");
    }
    else
    {
        printf("this node is null.\n");
    }

printf("\n");
}

//前序遍历递归方法打印结点内容
void PrintTree(TreeNode *pRoot)
{
    PrintTreeNode(pRoot);

if(pRoot != NULL)
    {
        if(pRoot->left != NULL)
            PrintTree(pRoot->left);

if(pRoot->right != NULL)
            PrintTree(pRoot->right);
    }
}

void DestroyTree(TreeNode *pRoot)
{
    if(pRoot != NULL)
    {
        TreeNode *pLeft = pRoot->left;
        TreeNode *pRight = pRoot->right;

delete pRoot;
        pRoot = NULL;

DestroyTree(pLeft);
        DestroyTree(pRight);
    }
}

 
 
 
												

【二叉查找树】03验证是否为二叉查找树【Validate Binary Search Tree】的更多相关文章

  1. [Swift]LeetCode98. 验证二叉搜索树 | Validate Binary Search Tree

    Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as ...

  2. [CareerCup] 4.5 Validate Binary Search Tree 验证二叉搜索树

    4.5 Implement a function to check if a binary tree is a binary search tree. LeetCode上的原题,请参见我之前的博客Va ...

  3. Leetcode 笔记 98 - Validate Binary Search Tree

    题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...

  4. leetcode dfs Validate Binary Search Tree

    Validate Binary Search Tree Total Accepted: 23828 Total Submissions: 91943My Submissions Given a bin ...

  5. Validate Binary Search Tree

    Validate Binary Search Tree Given a binary tree, determine if it is a valid binary search tree (BST) ...

  6. 【leetcode】Validate Binary Search Tree

    Validate Binary Search Tree Given a binary tree, determine if it is a valid binary search tree (BST) ...

  7. LintCode Validate Binary Search Tree

    Validate Binary Search Tree Given a binary tree, determine if it is a valid binary search tree (BST) ...

  8. 39. Recover Binary Search Tree && Validate Binary Search Tree

    Recover Binary Search Tree OJ: https://oj.leetcode.com/problems/recover-binary-search-tree/ Two elem ...

  9. 【LeetCode练习题】Validate Binary Search Tree

    Validate Binary Search Tree Given a binary tree, determine if it is a valid binary search tree (BST) ...

  10. LeetCode: Validate Binary Search Tree 解题报告

    Validate Binary Search Tree Given a binary tree, determine if it is a valid binary search tree (BST) ...

随机推荐

  1. 【Atheros】minstrel速率调整算法源码走读

    先说几个辅助的宏,因为内核不支持浮点运算,当然还有实现需要,minstrel对很多浮点值做了缩放: /* scaled fraction values */ #define MINSTREL_SCAL ...

  2. 那不是Bug,是新需求

    原文作者:Jeff Atwood 自从我干上软件开发这一行.而且使用了Bug跟踪系统.我们在每个项目里都会纠结一个主要的问题:你怎么能把Bug与功能需求区分开来? 当然,假设程序崩溃了,这毫无疑问是B ...

  3. math课本复习

    第七章 微分方程 第一节 微分方程的基本概念    未知函数.未知函数的倒数与自变量之间的关系的方程,叫做微分方程. 第二节 可分离变量的微分方程 第三节 齐次方程 第四节 一阶线性微分方程 总结:任 ...

  4. 使用UIImageView展现来自网络的图片

    本文转载至 http://www.cnblogs.com/chivas/archive/2012/05/21/2512324.html UIImageView:可以通过UIImage加载图片赋给UII ...

  5. 【BZOJ2006】[NOI2010]超级钢琴 ST表+堆

    [BZOJ2006][NOI2010]超级钢琴 Description 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以 ...

  6. ubuntu问题: 同时只能有一个软件管理工具在运行

    或者是: 只能同时运行一个更新管理器 打开终端输入命令:sudo dpkg –configure -a 运行,系统问题就解决了

  7. python __name__及__main()__的妙处

    #hello.py def sayHello(): str="hello" print(str); if __name__ == "__main__": pri ...

  8. js格式化货币金额

    /* 格式化金额, s : 金额 n : 保留位数 */ function formatMoney(s, n) { n = n > 0 && n <= 20 ? n : 2 ...

  9. (转)Web Service和WCF的到底有什么区别

    [1]Web Service:严格来说是行业标准,也就是Web Service 规范,也称作WS-*规范,既不是框架,也不是技术. 它有一套完成的规范体系标准,而且在持续不断的更新完善中. 它使用XM ...

  10. activiti基础--1------------------------生成.bpmn和.png以及部署流程定义

    helloworld.dbmn <?xml version="1.0" encoding="UTF-8"?> <definitions xml ...