原文地址:http://www.cnblogs.com/GXZlegend/p/6803821.html


题目描述

小B有一个序列,包含N个1~K之间的整数。他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数。小B请你帮助他回答询问。

输入

第一行,三个整数N、M、K。
第二行,N个整数,表示小B的序列。
接下来的M行,每行两个整数L、R。

输出

M行,每行一个整数,其中第i行的整数表示第i个询问的答案。

样例输入

6 4 3
1 3 2 1 1 3
1 4
2 6
3 5
5 6

样例输出

6
9
5
2


题解

莫队算法模板题,优雅的暴力

设原来有n个某颜色,加1后对答案的贡献为(n+1)^2-n^2=2*n+1,减1对答案的贡献为(n-1)^2-n^2=-(2*n-1)。

然后各种区间平移得到答案。

#include <cstdio>
#include <cmath>
#include <algorithm>
#define N 50010
using namespace std;
struct data
{
int l , r , b , p;
}a[N];
int c[N];
long long ans[N] , cnt[N];
bool cmp(data x , data y)
{
return x.b == y.b ? x.r < y.r : x.b < y.b;
}
int main()
{
int n , m , k , i , si , lp = 1 , rp = 0 , now = 0;
scanf("%d%d%d" , &n , &m , &k);
si = (int)sqrt(n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &c[i]);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &a[i].l , &a[i].r) , a[i].b = (a[i].l - 1) / si , a[i].p = i;
sort(a + 1 , a + m + 1 , cmp);
for(i = 1 ; i <= m ; i ++ )
{
while(lp < a[i].l) now -= 2 * cnt[c[lp]] - 1 , cnt[c[lp]] -- , lp ++ ;
while(rp > a[i].r) now -= 2 * cnt[c[rp]] - 1 , cnt[c[rp]] -- , rp -- ;
while(lp > a[i].l) lp -- , now += 2 * cnt[c[lp]] + 1 , cnt[c[lp]] ++ ;
while(rp < a[i].r) rp ++ , now += 2 * cnt[c[rp]] + 1 , cnt[c[rp]] ++ ;
ans[a[i].p] = now;
}
for(i = 1 ; i <= m ; i ++ ) printf("%lld\n" , ans[i]);
return 0;
}

【bzoj3781】小B的询问 莫队算法的更多相关文章

  1. BZOJ3781:小B的询问(莫队)

    Description 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L ...

  2. 【模板】BZOJ 3781: 小B的询问 莫队算法

    http://www.lydsy.com/JudgeOnline/problem.php?id=3781 N个数的序列,每次询问区间中每种数字出现次数的平方和,可以离线. 丢模板: #include ...

  3. 【国家集训队2010】小Z的袜子[莫队算法]

    [莫队算法][国家集训队2010]小Z的袜子 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程, ...

  4. luoguP2709 小B的询问 [莫队]

    题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...

  5. 洛谷P2709 小B的询问 莫队

    小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数.小 ...

  6. bzoj 2308 小Z的袜子(莫队算法)

    小Z的袜子 [题目链接]小Z的袜子 [题目类型]莫队算法 &题解: 莫队算法第一题吧,建议先看这个理解算法,之后在参考这个就可以写出简洁的代码 我的比第2个少了一次sort,他的跑了1600m ...

  7. 【bzoj5016】[Snoi2017]一个简单的询问 莫队算法

    题目描述 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. 输入 第一行,一个数字N,表 ...

  8. bzoj 2038 小Z的袜子 莫队算法

    题意 给你一个长度序列,有多组询问,每次询问(l,r)任选两个数相同的概率.n <= 50000,数小于等于n. 莫队算法裸题. 莫队算法:将序列分为根号n段,将询问排序,以L所在的块为第一关键 ...

  9. [日常摸鱼]bzoj2038[2009国家集训队]小Z的袜子-莫队算法

    今天来学了下莫队-这题应该就是这个算法的出处了 一篇别人的blog:https://www.cnblogs.com/Paul-Guderian/p/6933799.html 题意:一个序列,$m$次询 ...

随机推荐

  1. 如何在RedHat 7.0系统中安装mysql 5.7.22

    如何在RedHat 7.0系统中安装mysql 5.7.22 今天给大家介绍一下如何安装mysql5.7,在安装之前,首先要查看的是,你的系统中有没有已经安装过的情况.键入rpm -qa|grep m ...

  2. nginx+php-fpm结构模型剖析及优化(转载)

    一.nginx和php-fpm的关系和分工 nginx是web服务器,php-fpm是一个PHPFastCGI进程管理器,两者遵循fastcgi的协议进行通信,nginx负责静态类似html文件的处理 ...

  3. DNS的主从,转发与负载功能

    接着原来<DNS原理与应用>的文章,本章内容主要通过实现DNS的主从,转发,及基于域名解析不同的ip实现后端服务负载均衡的效果.最后再实现DNS的高级功能:类似CDN原理实现基于IP实现区 ...

  4. js | javascript中获取dom元素的高度和宽度

    javascript中获取dom元素高度和宽度的方法如下: 网页可见区域宽: document.body.clientWidth网页可见区域高: document.body.clientHeight网 ...

  5. IE6兼容png图片

    <!--[if IE 6]> <script src="/js/DD_belatedPNG.js"></script> <script&g ...

  6. 差点掉坑,MySQL一致性读原来是有条件的

    众所周知,在设定了隔离等级为Repeatable Read及以上时,InnoDB 可以实现数据的一致性读.换句话来说,就是事务执行的任意时刻,读取到的数据是同一个快照,不会受到其他事务的更新影响. 以 ...

  7. 彻底搞定C指针--“函数名与函数指针”

    函数名与函数指针   一 通常的函数调用 一个通常的函数调用的例子: //自行包含头文件 void MyFun(int x); //此处的申明也可写成:void MyFun( int ); 点击打开链 ...

  8. PHP 基础知识总结

    PHP 代表 PHP: Hypertext Preprocessor PHP 文件可包含文本.HTML.JavaScript代码和 PHP 代码 PHP 代码在服务器上执行,结果以纯 HTML 形式返 ...

  9. ERROR 1005 (HY000): Can't create table 'students.#sql-d9

    今天在创建外键的时候出现以下错误        ERROR 1005 (HY000): Can't create table 'students.#sql-d99_3' (errno: 150) 格式 ...

  10. spring源码学习中的知识点

    一.循环依赖 循环依赖就是循环引用,就是两个或多个bean之间互相持有对方. 1.构造器循环依赖 表示通过构造器注入造成的循环依赖,此依赖是无法解决的,只能抛出BeanCurrentlyInCreat ...