SPOJ : DIVCNT2 - Counting Divisors (square)
设
\[f(n)=\sum_{d|n}\mu^2(d)\]
则
\[\begin{eqnarray*}
\sigma_0(n^2)&=&\sum_{d|n}f(d)\\
ans&=&\sum_{i=1}^n\sigma_0(i^2)\\
&=&\sum_{i=1}^n\sum_{d|i}\sum_{k|d}\mu^2(k)\\
&=&\sum_{k=1}^n\mu^2(k)G(\lfloor\frac{n}{k}\rfloor)
\end{eqnarray*}\]
其中
\[G(n)=\sum_{i=1}^n\lfloor\frac{n}{i}\rfloor\]
又因为
\[\sum_{i=1}^n\mu^2(i)=\sum_{i=1}^{\sqrt{n}}\mu(i)\lfloor\frac{n}{i^2}\rfloor\]
因此首先线性筛预处理出$n^{\frac{2}{3}}$内的所有答案,然后分段计算即可。
时间复杂度$O(Tn^{\frac{2}{3}})$。
#include<cstdio>
typedef long long ll;
const int N=100000010;
int T,M,tot,p[N/10],f[N];char v[N],mu[N],h[N];ll g[N],n,m,o,a[10010],old,now,ans,i,j;
inline ll F(ll n){
if(n<M)return f[n];
ll ret=0;
for(ll i=1;i<=n/i;i++)ret+=n/i/i*mu[i];
return ret;
}
inline ll G(ll n){
if(n<M)return g[n];
ll ret=0;
for(ll i=1,j;i<=n;i=j+1){
j=n/(n/i);
ret+=n/i*(j-i+1);
}
return ret;
}
void init(){
int i,j,k;
for(mu[1]=g[1]=1,i=2;i<M;i++){
if(!v[i])mu[i]=-1,g[i]=h[i]=2,p[tot++]=i;
for(j=0;j<tot&&i*p[j]<M;j++){
v[k=i*p[j]]=1;
if(i%p[j]){
mu[k]=-mu[i];
g[k]=g[i]*2;
h[k]=2;
}else{
g[k]=g[i]/h[i]*(h[i]+1);
h[k]=h[i]+1;
break;
}
}
}
for(i=1;i<M;i++)f[i]=f[i-1]+(mu[i]!=0),g[i]+=g[i-1];
}
int main(){
scanf("%d",&T);
for(o=1;o<=T;o++){
scanf("%lld",&a[o]);
if(a[o]>m)m=a[o];
}
if(m<=1000000)M=m;else{
for(M=1;1LL*M*M*M<m;M++);
M*=M;
}
init();
for(o=1;o<=T;o++){
n=a[o];
ans=old=0;
for(i=1;i<=n;i=j+1){
now=F(j=n/(n/i));
ans+=(now-old)*G(n/i);
old=now;
}
printf("%lld\n",ans);
}
return 0;
}
SPOJ : DIVCNT2 - Counting Divisors (square)的更多相关文章
- [SPOJ] DIVCNT2 - Counting Divisors (square) (平方的约数个数前缀和 容斥 卡常)
题目 vjudge URL:Counting Divisors (square) Let σ0(n)\sigma_0(n)σ0(n) be the number of positive diviso ...
- SPOJ 20713 DIVCNT2 - Counting Divisors (square)
DIVCNT2 - Counting Divisors (square) #sub-linear #dirichlet-generating-function Let \sigma_0(n)σ0 ...
- SP20173 DIVCNT2 - Counting Divisors (square)
Refer 主要思路参考了 Command_block 的题解. Description 给定 \(n\)(\(n\le 10^{10}\)),求 \[\sum_{i=1}^n\sigma_0(i^2 ...
- SPOJ:[DIVCNT3]Counting Divisors
题目大意:求1~N的每个数因子数的立方和. 题解:由于N过大,我们不能直接通过线性筛求解.我们可以采用洲阁筛. 洲阁筛的式子可以写成: 对于F(1~√n),可以直接线性筛求解. 对于,我们进行以下DP ...
- SPOJ DIVCNT2 [我也不知道是什么分类了反正是数论]
SPOJ DIVCNT2 - Counting Divisors (square) 题意:求 \[ \sum_{i=1}^n\sigma_0(i^2) \] 好棒啊! 带着平方没法做,考虑用其他函数表 ...
- 【胡策篇】题解 (UOJ 192 + CF938G + SPOJ DIVCNT2)
和泉纱雾与烟花大会 题目来源: UOJ 192 最强跳蚤 (只改了数据范围) 官方题解: 在这里哦~(说的很详细了 我都没啥好说的了) 题目大意: 求树上各边权乘积是完全平方数的路径数量. 这种从\( ...
- DIVCNT2&&3 - Counting Divisors
DIVCNT2 - Counting Divisors (square) DIVCNT3 - Counting Divisors (cube) 杜教筛 [学习笔记]杜教筛 (其实不算是杜教筛,类似杜教 ...
- HDU 6069 Counting Divisors
Counting Divisors Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Oth ...
- SPOJ DIVCNT2
SPOJ DIVCNT2 题目大意: 求\(S2(n)=\sum_{i=1}^{n}\sigma_0{(i^2)}\) . 题解 我们可以先考虑括号里只有一个\(i\)的情况,这样,我们把\(i\)分 ...
随机推荐
- MySQL5.0数据库的安装
======================= 未完待续,持续更新中... -------------------------------------------------
- Top 5 iPad Pro Apps for Your Apple Pencil
1. Procreate - 5 to 10 dollars 2. Adobe Sketch - Free 3. Paper - Free 4. Pixelmator 5. Notes
- linux下apache各种跳转(包括伪静态)的配置
1.404跳转: vi /etc/httpd/conf/httpd.conf 在虚拟主机配置里添加一行:ErrorDocument 404 /404.html 2.301跳转: 1)将不带www的 ...
- maven project中,在main方法上右键Run as Java Application时,提示错误:找不到或无法加载主类XXX.XXXX.XXX
新建了一个maven project项目,经过一大堆的修改操作之后,突然发现在main方法上右键运行时,竟然提示:错误:找不到或无法加载主类xxx.xxx.xxx可能原因1.eclipse出问题了,在 ...
- 关于 Word Splitting 和 IFS 的三个细节
在 Bash manual 里叫 Word Splitting,在 Posix 规范里叫 Field Splitting,这两者指的是同一个东西,我把它翻译成“分词”,下面我就说三点很多人都忽略掉(或 ...
- Mysql存中文值乱码
一是安装mysql时,其中会有一个步骤选择编码方式,此时选择gbk即可.如果不选择,默认的编码是latin1: 二是在安装玩mysql之后,手动修改其配置文件,如下: (1)修改 MySql安装目录下 ...
- LPC1768/1769之CAN控制器概述(附库函数下载地址)
一.背景: 使用LPC1769来做CAN的收发,在此对使用LPC1769的CAN控制器进行收发做个总结和记录,以备下 次开发快速上手使用. 附:LPC1768/1769除了支持最高频率不同以外,其它基 ...
- linux磁盘分区模式
linux磁盘分区模式 模式一:MBR 1)主分区不超过四个 2)单个分区容量最大2TB 模式二:GPT 1)主分区个数"几乎"没有限制(原因:在GPT的分区表中最多可以支持128 ...
- 【Go入门教程6】interface(interface类型、interface值、空interface{}、嵌入interface、反射)
interface Go语言里面设计最精妙的应该算interface,它让面向对象,内容组织实现非常的方便,当你看完这一章,你就会被interface的巧妙设计所折服. 什么是interface 简单 ...
- vue2.0学习(二)
1.关于模板渲染,当需要渲染多个元素时可以 <ul> <template v-for="item in items"> <li>{{ item. ...