Codeforces 307 div2 E.GukiZ and GukiZiana 分块
10 seconds
256 megabytes
standard input
standard output
Professor GukiZ was playing with arrays again and accidentally discovered new function, which he called GukiZiana. For given array a, indexed with integers from 1 to n, and number y, GukiZiana(a, y) represents maximum value of j - i, such that aj = ai = y. If there is no y as an element in a, then GukiZiana(a, y) is equal to - 1. GukiZ also prepared a problem for you. This time, you have two types of queries:
- First type has form 1 l r x and asks you to increase values of all ai such that l ≤ i ≤ r by the non-negative integer x.
- Second type has form 2 y and asks you to find value of GukiZiana(a, y).
For each query of type 2, print the answer and make GukiZ happy!
The first line contains two integers n, q (1 ≤ n ≤ 5 * 105, 1 ≤ q ≤ 5 * 104), size of array a, and the number of queries.
The second line contains n integers a1, a2, ... an (1 ≤ ai ≤ 109), forming an array a.
Each of next q lines contain either four or two numbers, as described in statement:
If line starts with 1, then the query looks like 1 l r x (1 ≤ l ≤ r ≤ n, 0 ≤ x ≤ 109), first type query.
If line starts with 2, then th query looks like 2 y (1 ≤ y ≤ 109), second type query.
For each query of type 2, print the value of GukiZiana(a, y), for y value for that query.
4 3
1 2 3 4
1 1 2 1
1 1 1 1
2 3
2
2 3
1 2
1 2 2 1
2 3
2 4
0
-1 题意:给你一个n个数的序列,以及q个操作,有两种操作,1是区间[l,r]上的每个数加上v 2是查询y,求aj = ai = y的最大j-i
思路:我想到分块的做法,分为tb块,每一块中的每个元素保存v和id,然后每一块按v排序,相等按id排序,这样对于查询的时候,我们只需要从左到右找到第一块满足存在y,那么pl = lowwer_bound(y)。同理从右到左找到第一块满足存在y,那么pr = upper_bound(y)。 答案就是pr-pl。
对于更新操作,区间[l,r]所覆盖的块中,第一块和最后一块暴力更新,并且重建块,即重新排序。而对于中间的完整覆盖的块,我们只记录增量add[b],因为add[b]表示b整块的增量,那么b快依然有序,在b块查询x的时候,x -= add[b]即可。 做法很快想好了,但wa了好多发,就是以为不会爆ll。。。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 5e5 + ;
const int SIZE = ;
struct Block {
ll v; int id;
Block() {}
Block(ll v, int id) : v(v), id(id) {}
friend bool operator < (Block a, Block b) {
if(a.v == b.v) return a.id < b.id;
return a.v < b.v;
};
};
Block block[N/SIZE + ][SIZE + ];
int n, q;
ll A[N];
ll add[N/SIZE + ];
int tb, ls; void init() {
scanf("%d%d", &n, &q);
int b = , j = ;
for(int i = ; i < n; ++i) {
scanf("%I64d", &A[i]);
block[b][j] = Block(A[i], i);
if(++j == SIZE) { b++; j = ;}
}
ls = ;
for(int i = ; i < b; ++i) sort(block[i], block[i] + SIZE);
if(j) { ls = j; sort(block[b], block[b] + j); }
tb = b;
}
void rebuild(int b, int sz) {
int j = ;
for(int i = b * SIZE; i < b * SIZE + sz; ++i) block[b][j++] = Block(A[i], i);
sort(block[b], block[b] + j);
}
void update(int L, int R, int v) {
int lb = L / SIZE, rb = R / SIZE, j, sz;
if(lb == rb) {
for(int i = L; i <= R; ++i) A[i] += v;
if(lb == tb) sz = ls;
else sz = SIZE;
rebuild(lb, sz);
}else {
for(int i = L; i < (lb + ) * SIZE; ++i) A[i] += v;
rebuild(lb, SIZE); for(int i = rb * SIZE; i <= R; ++i) A[i] += v;
if(rb == tb) sz = ls;
else sz = SIZE;
rebuild(rb, sz);
for(int b = lb + ; b < rb; ++b) add[b] += v;
}
}
int upper(Block a[], int sz, ll v) {
int L = , R = sz;
while(R - L > ) {
int M = (L + R) >> ;
if(a[M].v <= v) L = M;
else R = M;
}
return L;
}
int lower(Block a[], int sz, ll v) {
int L = , R = sz;
while(L < R) {
int M = (L + R) >> ;
if(a[M].v >= v) R = M;
else L = M + ;
}
return L;
}
int query(ll x) {
int pl = -, pr = -;
ll v;
if(tb == ) {
for(int i = ; i < ls; ++i) if(A[i] == x) { pl = i; break; }
for(int i = ls - ; i >= ; --i) if(A[i] == x) { pr = i; break; }
if(pl == -) return -;
}else {
if(ls) for(int i = tb * SIZE + ls - ; i >= tb * SIZE; --i) if(A[i] == x) { pr = i; break; }
if(pr == -) {
for(int b = tb - ; b >= ; --b) {
v = x - add[b];
int px = upper(block[b], SIZE, v);
if(px < SIZE && block[b][px].v == v) { pr = block[b][px].id; break; }
}
}
if(pr == -) return -;
for(int b = ; b < tb; ++b) {
v = x - add[b];
int pi = lower(block[b], SIZE, v);
if(pi < SIZE && block[b][pi].v == v) { pl = block[b][pi].id; break; }
}
if(pl == -) {
for(int i = tb * SIZE; i < tb * SIZE + ls; ++i) if(A[i] == x) { pl = i; break; }
}
}
return pr - pl;
}
int main() {
//freopen("in.txt", "r", stdin);
init();
int op, l, r, x;
memset(add, , sizeof add);
for(int i = ; i < q; ++i) {
scanf("%d", &op);
if(op == ) {
scanf("%d%d%d", &l, &r, &x);
l--; r--;
update(l, r, x);
}else {
scanf("%d", &x);
printf("%d\n", query(x));
}
}
return ;
}
Codeforces 307 div2 E.GukiZ and GukiZiana 分块的更多相关文章
- Codeforces Round #307 (Div. 2) E. GukiZ and GukiZiana 分块
E. GukiZ and GukiZiana Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/55 ...
- Codeforces 551E - GukiZ and GukiZiana(分块)
Problem E. GukiZ and GukiZiana Solution: 先分成N=sqrt(n)块,然后对这N块进行排序. 利用二分查找确定最前面和最后面的位置. #include < ...
- CF 551E. GukiZ and GukiZiana [分块 二分]
GukiZ and GukiZiana 题意: 区间加 给出$y$查询$a_i=a_j=y$的$j-i$最大值 一开始以为和论文CC题一样...然后发现他带修改并且是给定了值 这样就更简单了.... ...
- Codeforces Round #307 (Div. 2) E. GukiZ and GukiZiana(分块)
E. GukiZ and GukiZiana time limit per test 10 seconds memory limit per test 256 megabytes input stan ...
- Codeforces 551E GukiZ and GukiZiana(分块思想)
题目链接 GukiZ and GukiZiana 题目大意:一个数列,支持两个操作.一种是对区间$[l, r]$中的数全部加上$k$,另一种是查询数列中值为$x$的下标的最大值减最小值. $n < ...
- CodeForces 551E GukiZ and GukiZiana
GukiZ and GukiZiana Time Limit: 10000ms Memory Limit: 262144KB This problem will be judged on CodeFo ...
- Codeforces 551 E - GukiZ and GukiZiana
E - GukiZ and GukiZiana 思路:分块, 块内二分 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC ...
- [codeforces551E]GukiZ and GukiZiana
[codeforces551E]GukiZ and GukiZiana 试题描述 Professor GukiZ was playing with arrays again and accidenta ...
- Codeforces #180 div2 C Parity Game
// Codeforces #180 div2 C Parity Game // // 这个问题的意思被摄物体没有解释 // // 这个主题是如此的狠一点(对我来说,),不多说了这 // // 解决问 ...
随机推荐
- ionic 白屏
昨天在发布新app的时候发现app在高版本的android的时候发现没有问题,在低版本的android 的时候发现存在白屏的情况,在run中alert,不能弹框,run不能运行, 参考这篇文章 ht ...
- Android热修复AndFix
热修复主要用来修复代码.修复bug.添加独立的功能,他的原理主要是操作PathClassLoader.DexClassLoader. PathClassLoader是类加载器,DexClassLoad ...
- 介绍DSA数字签名,非对称加密的另一种实现
接下来我们介绍DSA数字签名,非对称加密的另一种实现. DSA DSA-Digital Signature Algorithm 是Schnorr和ElGamal签名算法的变种,被美国NIST作为DSS ...
- MVC前后端数据被编码
@{ ViewBag.Title = "Home Page";}<script> function htmldecode(s) { console.log(s); va ...
- java ssh 框架下 利用junit4 spring-test进行单元测试
ssh框架下 由于bean实列 都交给spring 管理,要做单元测试就比较苦难,junit4 引入注解方便很多: 1. 加入依赖包 使用Spring的测试框架需要加入以下依赖包: JUnit 4 ...
- 【09-23】js原型继承学习笔记
js原型继承学习笔记 function funcA(){ this.a="prototype a"; } var b=new funcA(); b.a="object a ...
- ffmpeg常用转换命令,支持WAV转AMR
音频转换: 1.转换amr到mp3: ffmpeg -i shenhuxi.amr amr2mp3.mp3 2.转换amr到wav: ffmpeg -acodec libamr_nb -i shenh ...
- js简单弹出层、遮罩层
<html> <head> <title>js简单弹出层</title> <style> /*阴影边框效果*/ .box-shadow-1 ...
- ms-dos中 MSCDEX命名语法详解
一.MSCDEX的语法及参数: MSCDEX可以在AUTOEXEC.BAT文件中自动加载,也可以在DOS的命令行中载入但要使用光驱,前提条件是在Config.sys文件中加载了光驱的驱动 ...
- TCP/IP三次握手和HTTP过程
1.TCP连接 手机能够使用联网功能是因为手机底层实现了TCP/IP协议,可以使手机终端通过无线网络建立TCP连接.TCP协议可以对上层网络提供接口,使上层网络数据的传输建立在"无差别&qu ...