Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th box contains fi flowers. All flowers in a single box are of the same color (hence they are indistinguishable). Also, no two boxes have flowers of the same color.

Now Devu wants to select exactly s flowers from the boxes to decorate his garden. Devu would like to know, in how many different ways can he select the flowers from each box? Since this number may be very large, he asks you to find the number modulo (109 + 7).

Devu considers two ways different if there is at least one box from which different number of flowers are selected in these two ways.

Input

The first line of input contains two space-separated integers n and s (1 ≤ n ≤ 20, 0 ≤ s ≤ 1014).

The second line contains n space-separated integers f1, f2, ... fn (0 ≤ fi ≤ 1012).

Output

Output a single integer — the number of ways in which Devu can select the flowers modulo (109 + 7).

Example

Input
2 3
1 3
Output
2
Input
2 4
2 2
Output
1
Input
3 5
1 3 2
Output
3

题意:给定N种花,每种花有Fi朵,现在要取M朵花,问有多少种方案。

思路:母函数或者容斥定理,当然,学过数学竞赛的应该知道结论,怎么用容斥定理去做。我更倾向于用母函数去做,虽然方程是一样的,但是感觉后者好理解一些。

母函数 :    (1+X^1...+X^f1)*(1+X^1...+Xf2)*...(1+X^1...+X^fn)

=(1-X^(f1+1))*(1-X^(f2+1))...(1-X^(fn+1)) / ((1-X)^N)

=(1-X^(f1+1))*(1-X^(f2+1))...(1-X^(fn+1)) * ((1+X^1+X^2+...)^N)。

对于前面部分((1-X^(f1+1))*(1-X^(f2+1))...(1-X^(fn+1)) )可以枚举O(2^N),然后剩余部分,就是组合问题了,假设前面的和为S,那么就要在后面部分(((1+X^1+X^2+...)^N))拿M-S个,然后根据组合公式,C(M-S+N-1,N-1)。

组合公式那里利用Lucas可以降低复杂度,但是我还是觉得复杂度过不去,O(N * 2^N *Mod *LogMod )可能是数据水了,然后只花了900ms。

容斥定理:假设没有限制F,则得到ans=C(M+N-1,N-1)。但是有限制后有的会超过Fi,枚举超过的那几个,blabla,大概是这个方向啦,具体的我也没有细究。

#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
const int Mod=1e9+;
int N; ll M,f[],ans;
ll qpow(ll a,ll x)
{
ll res=; a%=Mod;
while(x){
if(x&1LL) res=res*a%Mod;
a=a*a%Mod;
x>>=;
} return res;
}
ll Com(ll a,ll b)
{
ll res=,fm=,fz=;
if(a-b<b) b=a-b;
for(int i=;i<=b;i++){
fm=fm*i%Mod;
fz=fz*(a-i+)%Mod;
}
res=fz*qpow(fm,Mod-)%Mod;
return res;
}
ll Lucas(ll a,ll b)
{
if(b==) return ;
return Lucas(a/Mod,b/Mod)*Com(a%Mod,b%Mod)%Mod;
}
void solve()
{
for(int i=;i<(<<N);i++){
ll sig=,sum=M;
for(int j=;j<N;j++){
if((<<j)&i) sum-=(f[j]+),sig*=-;
}
if(sum<) continue;
ans=(ans+sig*Lucas(N+sum-,N-))%Mod;
}
}
int main()
{
scanf("%d%lld",&N,&M);
for(int i=;i<N;i++)
scanf("%lld",&f[i]);//,sum+=f[i];
solve();
printf("%lld\n",(ans%Mod+Mod)%Mod);
return ;
}

CodeForces-451E:Devu and Flowers (母函数+组合数+Lucas定理)的更多相关文章

  1. Codeforces 451E Devu and Flowers【容斥原理+卢卡斯定理】

    题意:每个箱子里有\( f[i] \)种颜色相同的花,现在要取出\( s \)朵花,问一共有多少种颜色组合 首先枚举\( 2^n \)种不满足条件的情况,对于一个不被满足的盒子,我们至少拿出\( f[ ...

  2. Codeforces 451E Devu and Flowers(容斥原理)

    题目链接:Codeforces 451E Devu and Flowers 题目大意:有n个花坛.要选s支花,每一个花坛有f[i]支花.同一个花坛的花颜色同样,不同花坛的花颜色不同,问说能够有多少种组 ...

  3. codeforces 451E. Devu and Flowers 容斥原理+lucas

    题目链接 给n个盒子, 每个盒子里面有f[i]个小球, 然后一共可以取sum个小球.问有多少种取法, 同一个盒子里的小球相同, 不同盒子的不同. 首先我们知道, n个盒子放sum个小球的方式一共有C( ...

  4. CodeForces - 451E Devu and Flowers (容斥+卢卡斯)

    题意:有N个盒子,每个盒子里有fi 朵花,求从这N个盒子中取s朵花的方案数.两种方法不同当且仅当两种方案里至少有一个盒子取出的花的数目不同. 分析:对 有k个盒子取出的数目超过了其中的花朵数,那么此时 ...

  5. Codeforces 451E Devu and Flowers(组合计数)

    题目地址 在WFU(不是大学简称)第二次比赛中做到了这道题.高中阶段参加过数竞的同学手算这样的题简直不能更轻松,只是套一个容斥原理公式就可以.而其实这个过程放到编程语言中来实现也没有那么的复杂,不过为 ...

  6. codeforces 451E Devu and Flowers

    题意:有n个瓶子每个瓶子有 f[i] 支相同的颜色的花(不同瓶子颜色不同,相同瓶子花视为相同) 问要取出s支花有多少种不同方案. 思路: 如果每个瓶子的花有无穷多.那么这个问题可以转化为  s支花分到 ...

  7. uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT)

    uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT) uoj 题目描述自己看去吧( 题解时间 首先看到 $ p $ 这么小还是质数,第一时间想到 $ lucas $ 定理. 注意 ...

  8. 【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Statu ...

  9. [Swust OJ 247]--皇帝的新衣(组合数+Lucas定理)

    题目链接:http://acm.swust.edu.cn/problem/0247/ Time limit(ms): 1000 Memory limit(kb): 65535   Descriptio ...

随机推荐

  1. NYOJ27水池数目,类似于FZU1008最大黑区域,简单搜索题~~~

    水池数目 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述 南阳理工学院校园里有一些小河和一些湖泊,现在,我们把它们通一看成水池,假设有一张我们学校的某处的地图,这个地图上 ...

  2. [Kubernetes]Volume

    容器技术使用rootfs机制和Mount Namespace,构建出一个同宿主机完全隔离开的文件系统环境 那容器里进程新建的文件,怎么样才能让宿主机获取到?宿主机上的文件和目录,怎么样才能让容器里的进 ...

  3. HDU4462稻草人

    l问题描述:有一块N*N的玉米田(N<=50),给定K个(X,Y)的坐标位置(K<=10)和相应的覆盖范围,请问,至少在这K个位置中选择几个放置稻草人,能保证玉米田全被覆盖?     #i ...

  4. E题

    题目大意: 找到一个最小的l值,使得a到b-l+1中任取一个数开始前进l次,中间包含至少有k个素数,如果找不到,返回-1: 运用素数打表法和2分法便能简单搞定: 题目链接:http://codefor ...

  5. Codeforces396A - On Number of Decompositions into Multipliers

    Portal Description 给出\(n(n\leq500)\)个\([1,10^9]\)的数,令\(m=\prod_{i=1}^n a_i\).求有多少个有序排列\(\{a_n\}\),使得 ...

  6. 怎样检查Android网络连接状态

    在发送任何HTTP请求前最好检查下网络连接状态,这样可以避免异常.这个教程将会介绍怎样在你的应用中检测网络连接状态. 创建新的项目 1.在Eclipse IDE中创建一个新的项目并把填入必须的信息.  ...

  7. Match the string--hdu1797(模拟)

    http://acm.hdu.edu.cn/showproblem.php?pid=1797 就是模拟 我的思路是标记aba 和h的位置 然后就判断是否正确  就行了 还有就是  最后 fkfkfkf ...

  8. [Bzoj4260]Codechef REBXOR(trie树)

    4260: Codechef REBXOR Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1534  Solved: 669[Submit][Stat ...

  9. Java实现简单的图片浏览器

    第一次写博客,不喜勿喷. 最近一个小师弟问我怎么用Java做图片浏览器,感觉好久没玩Java了,就自己动手做了一下. 学校的教程是用Swing来做界面的,所以这里也用这个来讲. 首先要做个大概的界面出 ...

  10. 转: ORACLE存储过程笔记2----运算符和表达式

    运算符和表达式     关系运算 =等于<>,!=不等于<小于>大于<=小于等于>=大于等于       一般运算   +加-减*乘/除:=赋值号=>关系号. ...