POJ-1655 Balancing Act(树的重心)
For example, consider the tree:
Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two.
For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number.
Input
Output
Sample Input
1
7
2 6
1 2
1 4
4 5
3 7
3 1
Sample Output
1 2 题意就是给你一棵无根树,让你找到一个点,去掉这个点之后使得剩下的子树的最大节点数最小; 思路,就是求树的重心,下面先给出树的重心的定义:对于一棵n个节点的无根树,找到一个点使得把树变成一棵以该节点为根的有根树,这时的最大子树的节点数最小。
定义sizes[i]表示i的最大子树的节点数,定义dp[i]为以i为根的最大子树的节点数。然后递归求解。
#include <iostream>
#include <cstdio>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
const int maxn=1e6+; int dp[maxn];
int sizes[maxn];
int ans,n,sum;
vector<int> v[maxn];//二维矩阵存图
void dfs(int x,int fa)
{
sizes[x]=;
int maxx=;
for(int i=;i<v[x].size();i++)
{
int y=v[x][i];
if(y!=fa)
{
dfs(y,x);
sizes[x]+=sizes[y];
maxx=max(maxx,sizes[y]);
} }
dp[x]=max(maxx,n-sizes[x]);
if(sum>dp[x])
{
ans=x;
sum=dp[x];
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
sum=0x3f3f3f3f;
scanf("%d",&n);
memset(dp,,sizeof(dp));
memset(sizes,,sizeof(sizes));
for(int i=;i<=n;i++)v[i].clear();
for(int i=;i<n;i++)
{
int L,K;
scanf("%d%d",&L,&K);
v[K].push_back(L);
v[L].push_back(K);
}
dfs(,-);
printf("%d %d\n",ans,dp[ans]);
} return ;
}
POJ-1655 Balancing Act(树的重心)的更多相关文章
- POJ 1655 Balancing Act 树的重心
Balancing Act Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. ...
- POJ 1655 - Balancing Act 树型DP
这题和POJ 3107 - Godfather异曲同工...http://blog.csdn.net/kk303/article/details/9387251 Program: #include&l ...
- POJ.1655 Balancing Act POJ.3107 Godfather(树的重心)
关于树的重心:百度百科 有关博客:http://blog.csdn.net/acdreamers/article/details/16905653 1.Balancing Act To POJ.165 ...
- poj 1655 Balancing Act 求树的重心【树形dp】
poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好 ...
- POJ 1655 Balancing Act【树的重心】
Balancing Act Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14251 Accepted: 6027 De ...
- POJ 1655.Balancing Act 树形dp 树的重心
Balancing Act Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14550 Accepted: 6173 De ...
- poj 1655 Balancing Act(找树的重心)
Balancing Act POJ - 1655 题意:给定一棵树,求树的重心的编号以及重心删除后得到的最大子树的节点个数size,如果size相同就选取编号最小的. /* 找树的重心可以用树形dp或 ...
- POJ 1655 Balancing Act&&POJ 3107 Godfather(树的重心)
树的重心的定义是: 一个点的所有子树中节点数最大的子树节点数最小. 这句话可能说起来比较绕,但是其实想想他的字面意思也就是找到最平衡的那个点. POJ 1655 题目大意: 直接给你一棵树,让你求树的 ...
- POJ 1655 - Balancing Act - [DFS][树的重心]
链接:http://poj.org/problem?id=1655 Time Limit: 1000MS Memory Limit: 65536K Description Consider a tre ...
- POJ 1655 Balancing Act【树的重心模板题】
传送门:http://poj.org/problem?id=1655 题意:有T组数据,求出每组数据所构成的树的重心,输出这个树的重心的编号,并且输出重心删除后得到的最大子树的节点个数,如果个数相同, ...
随机推荐
- layoutSubviews, setNeedsLayout, layoutIfNeeded
layoutSubviews总结 ios layout机制相关方法 - (CGSize)sizeThatFits:(CGSize)size- (void)sizeToFit——————- - (voi ...
- Project Euler:Problem 42 Coded triangle numbers
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...
- JSP开发学习参考文章
配置JDK和Tomcat环境变量 http://blog.csdn.net/lijiazhi1987/article/details/2742181 eclipse maven plugin 插件安装 ...
- CSS经典布局之弹性布局
当我们在浏览浏览器的时候,经常会放大/缩小浏览器的显示比例,或者在不同的设备上.所处的分辨率也不尽同样. 因此.我们须要学习一个新的知识:弹性盒模型. 弹性盒模型 实现项目对齐,方向,排序(即使项目大 ...
- Oracle 用户管理(二)
1 给某人赋予"系统权限" SQL> grant connect to aobama with admin option 意思是将admin的连接数据库 ...
- 解决myeclipse中struts2 bug问题包的替换问题
由于struts2的bug问题,手工替换还是比較麻烦.但即便是最新的myeclipse2014也没有替换最新的struts2包,研究了一天,最终找到了解决的方法.下面就解决方法与大家分享一下. 1.在 ...
- 【POJ 2777】 Count Color(线段树区间更新与查询)
[POJ 2777] Count Color(线段树区间更新与查询) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4094 ...
- The bytes/str dichotomy in Python 3
The bytes/str dichotomy in Python 3 - Eli Bendersky's website https://eli.thegreenplace.net/2012/01/ ...
- Office 修改语言
- [App Store Connect帮助]三、管理 App 和版本(2.4)输入 App 信息:提供加密出口合规证明文稿
上传至 App Store Connect 的 App 被上传至位于美国的 Apple 服务器.如果您提交 App 的目的是为了在 App Store 上分发您的 App 或通过美国或加拿大的境外 T ...