Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T. 
For example, consider the tree: 

Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two.

For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number.

Input

The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.

Output

For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.

Sample Input

1
7
2 6
1 2
1 4
4 5
3 7
3 1

Sample Output

1 2

题意就是给你一棵无根树,让你找到一个点,去掉这个点之后使得剩下的子树的最大节点数最小;

思路,就是求树的重心,下面先给出树的重心的定义:对于一棵n个节点的无根树,找到一个点使得把树变成一棵以该节点为根的有根树,这时的最大子树的节点数最小。
定义sizes[i]表示i的最大子树的节点数,定义dp[i]为以i为根的最大子树的节点数。然后递归求解。
 #include <iostream>
#include <cstdio>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
const int maxn=1e6+; int dp[maxn];
int sizes[maxn];
int ans,n,sum;
vector<int> v[maxn];//二维矩阵存图
void dfs(int x,int fa)
{
sizes[x]=;
int maxx=;
for(int i=;i<v[x].size();i++)
{
int y=v[x][i];
if(y!=fa)
{
dfs(y,x);
sizes[x]+=sizes[y];
maxx=max(maxx,sizes[y]);
} }
dp[x]=max(maxx,n-sizes[x]);
if(sum>dp[x])
{
ans=x;
sum=dp[x];
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
sum=0x3f3f3f3f;
scanf("%d",&n);
memset(dp,,sizeof(dp));
memset(sizes,,sizeof(sizes));
for(int i=;i<=n;i++)v[i].clear();
for(int i=;i<n;i++)
{
int L,K;
scanf("%d%d",&L,&K);
v[K].push_back(L);
v[L].push_back(K);
}
dfs(,-);
printf("%d %d\n",ans,dp[ans]);
} return ;
}
												

POJ-1655 Balancing Act(树的重心)的更多相关文章

  1. POJ 1655 Balancing Act 树的重心

    Balancing Act   Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. ...

  2. POJ 1655 - Balancing Act 树型DP

    这题和POJ 3107 - Godfather异曲同工...http://blog.csdn.net/kk303/article/details/9387251 Program: #include&l ...

  3. POJ.1655 Balancing Act POJ.3107 Godfather(树的重心)

    关于树的重心:百度百科 有关博客:http://blog.csdn.net/acdreamers/article/details/16905653 1.Balancing Act To POJ.165 ...

  4. poj 1655 Balancing Act 求树的重心【树形dp】

    poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好 ...

  5. POJ 1655 Balancing Act【树的重心】

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14251   Accepted: 6027 De ...

  6. POJ 1655.Balancing Act 树形dp 树的重心

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14550   Accepted: 6173 De ...

  7. poj 1655 Balancing Act(找树的重心)

    Balancing Act POJ - 1655 题意:给定一棵树,求树的重心的编号以及重心删除后得到的最大子树的节点个数size,如果size相同就选取编号最小的. /* 找树的重心可以用树形dp或 ...

  8. POJ 1655 Balancing Act&&POJ 3107 Godfather(树的重心)

    树的重心的定义是: 一个点的所有子树中节点数最大的子树节点数最小. 这句话可能说起来比较绕,但是其实想想他的字面意思也就是找到最平衡的那个点. POJ 1655 题目大意: 直接给你一棵树,让你求树的 ...

  9. POJ 1655 - Balancing Act - [DFS][树的重心]

    链接:http://poj.org/problem?id=1655 Time Limit: 1000MS Memory Limit: 65536K Description Consider a tre ...

  10. POJ 1655 Balancing Act【树的重心模板题】

    传送门:http://poj.org/problem?id=1655 题意:有T组数据,求出每组数据所构成的树的重心,输出这个树的重心的编号,并且输出重心删除后得到的最大子树的节点个数,如果个数相同, ...

随机推荐

  1. vim入门级使用

    1.刚进入是 command mode 命令行模式 2.i  进入插入 insert  mode 模式 在插入模式下只能 输入内容,如果要删除内容,需要切换到命令行模式,移动光标进行删除. 3.esc ...

  2. Spring MVC学习-------------訪问到静态的文件

    怎样訪问到静态的文件,如jpg,js,css? 怎样你的DispatcherServlet拦截"*.do"这种有后缀的URL.就不存在訪问不到静态资源的问题. 假设你的Dispat ...

  3. 《转》OpenStack对象存储——Swift

    OpenStack Object Storage(Swift)是OpenStack开源云计算项目的子项目之中的一个.被称为对象存储.提供了强大的扩展性.冗余和持久性.本文将从架构.原理和实践等几方面讲 ...

  4. USRP通信的结构体和常量(上位机、下位机共用)

    fw_common.h包括了USRP固件和上位机共用的代码,寄存器地址映射.结构体定义等 #include <stdint.h> /*! * Structs and constants f ...

  5. [Unity 设计模式]IOC依赖倒置

    1.前言 最近在看<游戏开发与设计模式>一书,看到控制反转设计模式,作者说:上层模块不应该依赖于下层模块,上层模块和下层模块都应该依赖于接口,这样能减少耦合.然后附带举了个例子,我觉得特别 ...

  6. oc83--自定义类实现copy方法

    // // main.m // 自定义类实现copy #import <Foundation/Foundation.h> #import "Person.h" #imp ...

  7. 51nod 1353 树

    树背包 设f[i][j]表示第i个点,和子节点组成的联通块大小为j,其他都可行的方案 j=0表示可行的总方案 #include<cstdio> #include<iostream&g ...

  8. Android webkit keyevent 事件传递过程

    前言:基于android webview 上定制自己使用的可移植浏览器apk,遇到好多按键处理的问题.所以索性研究了一下keyevent 事件的传递流程. frameworks 层 keyevent ...

  9. HTML Email 编写指南

    今天,我想写一个"低技术"问题. 话说我订阅了不少了新闻邮件(Newsletter),比如JavaScript Weekly.每周收到一封邮件,了解本周的大事. 有一天,我就在想, ...

  10. Web开发必须知道的知识点

    Web前端必须知道 一.常用那几种浏览器测试.有哪些内核(Layout Engine) 1.浏览器:IE,Chrome,FireFox,Safari,Opera. 2.内核:Trident,Gecko ...