传送门

Time Limit: 2000MS   Memory Limit: 10000K
Total Submissions: 14915   Accepted: 4745

Description

Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)

Input

The data set, which is read from a the std input, starts with the tree description, in the form:

nr_of_vertices 
vertex:(nr_of_successors) successor1 successor2 ... successorn 
...
where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form: 
nr_of_pairs 
(u v) (x y) ...

The input file contents several data sets (at least one). 
Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.

Output

For each common ancestor the program prints the ancestor and the number of pair for which it is an ancestor. The results are printed on the standard output on separate lines, in to the ascending order of the vertices, in the format: ancestor:times 
For example, for the following tree: 

Sample Input

5
5:(3) 1 4 2
1:(0)
4:(0)
2:(1) 3
3:(0)
6
(1 5) (1 4) (4 2)
(2 3)
(1 3) (4 3)

Sample Output

2:1
5:5

Hint

Huge input, scanf is recommended.

Source

 
 
万分感谢万能的kss,几句话就教会了窝,以下题意及题解均转自kss博客:
http://blog.csdn.net/u011645923/article/details/35780547
 
题意:给定一个n个结点的有向树,m次询问(u,v)的 lca,输出询问中作为lca的点以及作为lca的次数。

思路:离线lca ,利用tarjan算法。

tarjan算法的步骤是(当dfs到节点u时):
1. 在并查集中建立仅有u的集合,设置该集合的祖先为u
2. 对u的每个孩子v:
   2.1 tarjan之
   2.2 合并v到父节点u的集合,确保集合的祖先是u
3. 设置u为已遍历
4. 处理关于u的查询,若查询(u,v)中的v已遍历过,则LCA(u,v)=v所在的集合的祖先

14006525 njczy2010 1470 Accepted 2992K 516MS G++ 1979B 2015-03-25 19:29:20
 #include <cstdio>
#include <cstring>
#include <stack>
#include <vector>
#include <algorithm> #define ll long long
int const N = ;
int const M = ;
int const inf = ;
ll const mod = ; using namespace std; int n,m;
vector<int> bian[N];
vector<int> query[N];
int cnt[N];
int fa[N];
int vis[N];
int degree[N]; int findfa(int x)
{
return fa[x] == x ? fa[x] : fa[x] = findfa(fa[x]);
} void ini()
{
int i,j;
int k,u,v;
memset(cnt,,sizeof(cnt));
memset(vis,,sizeof(vis));
memset(degree,,sizeof(degree));
for(i=;i<=n;i++){
bian[i].clear();
query[i].clear();
fa[i]=i;
}
for(i=;i<=n;i++){
scanf("%d:(%d)",&u,&k);
for(j=;j<k;j++){
scanf("%d",&v);
bian[u].push_back(v);
degree[v]++;
}
}
scanf("%d",&m);
for(i=;i<=m;i++){
while(getchar()!='(') ;
scanf("%d%d",&u,&v);
while(getchar()!=')') ;
query[u].push_back(v);
query[v].push_back(u);
}
} void tarjan(int u,int f)
{
vector<int>::iterator it;
int v;
for(it=bian[u].begin();it!=bian[u].end();it++){
v=*it;
tarjan(v,u);
} for(it=query[u].begin();it!=query[u].end();it++){
v=*it;
if(vis[v]==) continue;
cnt[ findfa(v) ]++;
}
vis[u]=;
fa[u]=f;
} void solve()
{
int i;
for(i=;i<=n;i++){
if(degree[i]==){
tarjan(i,-);
}
}
} void out()
{
int i;
for(i=;i<=n;i++){
// printf("%d:%d\n",i,cnt[i]);
if(cnt[i]!=){
printf("%d:%d\n",i,cnt[i]);
}
}
} int main()
{
//freopen("data.in","r",stdin);
//scanf("%d",&T);
// for(cnt=1;cnt<=T;cnt++)
//while(T--)
while(scanf("%d",&n)!=EOF)
{
ini();
solve();
out();
}
}

poj1470 Closest Common Ancestors [ 离线LCA tarjan ]的更多相关文章

  1. POJ 1470 Closest Common Ancestors【LCA Tarjan】

    题目链接: http://poj.org/problem?id=1470 题意: 给定若干有向边,构成有根数,给定若干查询,求每个查询的结点的LCA出现次数. 分析: 还是很裸的tarjan的LCA. ...

  2. POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 13372   Accept ...

  3. POJ 1470 Closest Common Ancestors (LCA, dfs+ST在线算法)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 13370   Accept ...

  4. POJ 1470 Closest Common Ancestors 【LCA】

    任意门:http://poj.org/problem?id=1470 Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000 ...

  5. poj----(1470)Closest Common Ancestors(LCA)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 15446   Accept ...

  6. ZOJ 1141:Closest Common Ancestors(LCA)

    Closest Common Ancestors Time Limit: 10 Seconds      Memory Limit: 32768 KB Write a program that tak ...

  7. POJ1470 Closest Common Ancestors

    LCA问题,用了离线的tarjan算法.输入输出参考了博客http://www.cnblogs.com/rainydays/archive/2011/06/20/2085503.htmltarjan算 ...

  8. POJ 1470 Closest Common Ancestors (模板题)(Tarjan离线)【LCA】

    <题目链接> 题目大意:给你一棵树,然后进行q次询问,然后要你统计这q次询问中指定的两个节点最近公共祖先出现的次数. 解题分析:LCA模板题,下面用的是离线Tarjan来解决.并且为了代码 ...

  9. POJ1470 Closest Common Ancestors 【Tarjan的LCA】

    非常裸的模版题,只是Tarjan要好好多拿出来玩味几次 非常有点巧妙呢,tarjan,大概就是当前结点和它儿子结点的羁绊 WA了俩小时,,,原因是,这个题是多数据的(还没告诉你T,用scanf!=EO ...

随机推荐

  1. Java基础--java简介

    1.Java的起源: Oak  -->  Java 2.Java的发展 Java1.0 Java2 JavaSE:Java平台标准版 JavaME:微型版 JavaEE:企业版 Sun公司 or ...

  2. MongoDB最简单的入门教程之四:使用Spring Boot操作MongoDB

    Spring Boot 是一个轻量级框架,可以完成基于 Spring 的应用程序的大部分配置工作.Spring Boot的目的是提供一组工具,以便快速构建容易配置的Spring应用程序,省去大量传统S ...

  3. VTK教程系列:VTK基础及应用开发教程

    由于OpenCV不能使用,只能使用VTK库的图像处理库,暂时还没有找到其他可以全面替代的库: CSDN东灵工作室:http://blog.csdn.net/www_doling_net/article ...

  4. PHP一句话后门过狗姿势万千之传输层加工

    既然木马已就绪,那么想要利用木马,必然有一个数据传输的过程,数据提交是必须的,数据返回一般也会有的,除非执行特殊命令. 当我们用普通菜刀连接后门时,数据时如何提交的,狗狗又是如何识别的,下面结合一个实 ...

  5. mysql-mmm 部署高可用集群

    集群的部署(mysql-mmm + 主从同步) 什么是集群? 多台服务器提供相同的服务 集群的好处? 节省成本. 配置集群? 准备环境:准备4台数据库服务器 准备服务器,能够ping 4 台数据库服务 ...

  6. svn批处理语句

    sc create SVNService binpath="O:\ProgramingSoftware\SuiVersion\bin\svnserve.exe --service -r E: ...

  7. flask_第一个程序

    安装flask sudo pip3 install flask falsk最小应用 from flask import Flask app = Flask(__name__) @app.route(' ...

  8. docker client和daemom

    client 模式 docker命令对应的源文件是docker/docker.go, docker [options] command [arg...] 其中options参数为flag,任何时候执行 ...

  9. 安卓获取数据demo出现的问题

    时间戳是long型的数据,但其他数据都是float型,但AsyncTask要求是统一数据类型.这样我就不能把时间戳放进AsyncTask里面进行处理,我就在doInBackground中获取时间戳然后 ...

  10. iOS开发基础知识

    1:App跳转至系统Settings 跳转在IOS8以上跟以下是有区别的,如果是IOS8以上可以如下设置: NSURL *url = [NSURL URLWithString:UIApplicatio ...