题目描述

Bobo has a directed graph G with n vertex labeled by 1,2,3,..n.

Let D(i,j) be the number of edges from vertex i to vertex j on the shortest path.

If the shortest path does not exist,then D(i,j)=n.

Bobo would like to find the sum of  D(i,j)*D(i,j) for all 1<=i<=n and 1<=j<=n.

输入

There are no more than 5 test cases.

The first line contains an integer n(1<=n<=1000).

The i-th of the following n lines contains n integers g(i,1),g(i,2),..g(i,n).

If there is an edge from i to j,then g(i,j)=1,otherwise g(i,j)=0;

输出

An integer denotes the sum of D(i,j)*D(i,j) for all 1<=i<=n and 1<=j<=n.

样例输入

3
010
001
100
2
10
01

样例输出

15
8
题意就是求所有D(i,j)*D(i,j)的和。D(i,j)代表i j之间的最短路径。
正常的想法肯定是 bfs求出任意两点之间的最短路径 但这样做的时间复杂度大概n^3 会超时。
得优化。用set维护未访问的点 因为set的删除 插入的操作都是logn 而n最大是1000。所以总体的时间复杂度是 常数*n^2
/* ***********************************************
Author :guanjun
Created Time :2016/3/21 16:44:25
File Name :neu1685.cpp
************************************************ */
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <stdio.h>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <iomanip>
#include <list>
#include <deque>
#include <stack>
#define ull unsigned long long
#define ll long long
#define mod 90001
#define INF 0x3f3f3f3f
#define maxn 1010
#define cle(a) memset(a,0,sizeof(a))
const ull inf = 1LL << ;
const double eps=1e-;
using namespace std;
priority_queue<int,vector<int>,greater<int> >pq;
struct Node{
int x,y;
};
struct cmp{
bool operator()(Node a,Node b){
if(a.x==b.x) return a.y> b.y;
return a.x>b.x;
}
}; bool cmp(int a,int b){
return a>b;
}
int n;
char mp[maxn][maxn];
int vis[maxn];
int dis[maxn];
ll sum=;
set<int>s;
set<int>::iterator it;
void solve(){
cle(dis);
s.clear();
int cnt=;
queue<int>q;
for(int i=;i<=n;i++){
q.push(i);
for(int j=;j<=n;j++){
if(i==j)continue;
if(mp[i][j]=='')dis[j]=,q.push(j);
else s.insert(j);
}
//cout<<"s "<<s.size()<<endl;
while(!q.empty()){
int x=q.front();q.pop();
cnt=;
for(it=s.begin();it!=s.end();it++){
if(mp[x][*it]==''){
q.push(*it);
dis[*it]=dis[x]+;
vis[++cnt]=*it;
}
}
for(int j=;j<=cnt;j++)s.erase(vis[j]);
}
for(int j=;j<=n;j++){
if(i==j)continue;
else{
if(dis[j]>)sum+=dis[j]*dis[j];
else sum+=n*n;
}
}
cle(dis);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
//freopen("out.txt","w",stdout);
while(cin>>n){
sum=;
for(int i=;i<=n;i++){
scanf("%s",mp[i]+);
}
/*
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)
printf("%c%c",mp[i][j],j==n?10:' ');
}*/
solve();
printf("%lld\n",sum);
}
return ;
}
												

NEU 1685: All Pair Shortest Path的更多相关文章

  1. The Shortest Path in Nya Graph

    Problem Description This is a very easy problem, your task is just calculate el camino mas corto en ...

  2. (中等) HDU 4725 The Shortest Path in Nya Graph,Dijkstra+加点。

    Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...

  3. HDU 4725 The Shortest Path in Nya Graph(构图)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  4. HDU 4725 The Shortest Path in Nya Graph (最短路)

    The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  5. 847. Shortest Path Visiting All Nodes

    An undirected, connected graph of N nodes (labeled 0, 1, 2, ..., N-1) is given as graph. graph.lengt ...

  6. 【CF938G】Shortest Path Queries(线段树分治,并查集,线性基)

    [CF938G]Shortest Path Queries(线段树分治,并查集,线性基) 题面 CF 洛谷 题解 吼题啊. 对于每个边,我们用一个\(map\)维护它出现的时间, 发现询问单点,边的出 ...

  7. Proof for Floyd-Warshall's Shortest Path Derivation Algorithm Also Demonstrates the Hierarchical Path Construction Process

    (THIS BLOG WAS ORIGINALLY WRTITTEN IN CHINESE WITH LINK: http://www.cnblogs.com/waytofall/p/3732920. ...

  8. The Shortest Path in Nya Graph HDU - 4725

    Problem Description This is a very easy problem, your task is just calculate el camino mas corto en ...

  9. [CF843D]Dynamic Shortest Path

    [CF843D]Dynamic Shortest Path 题目大意: 给定一个带权有向图,包含\(n(n\le10^5)\)个点和\(m(m\le10^5)\)条边.共\(q(q\le2000)\) ...

随机推荐

  1. BZOJ2780 [Spoj]8093 Sevenk Love Oimaster 【广义后缀自动机】

    题目 Oimaster and sevenk love each other. But recently,sevenk heard that a girl named ChuYuXun was dat ...

  2. 阿里 AndFix 热修复框架简介

    阿里AndFix热修复框架简介 热修复原理: Android的类加载机制 Android的类加载器分为两种,PathClassLoader和DexClassLoader,两者都继承自BaseDexCl ...

  3. bzoj 2017 [Usaco2009 Nov]硬币游戏 动态规划

    [Usaco2009 Nov]硬币游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 431  Solved: 240[Submit][Status] ...

  4. [配置Cordova环境] [Alfred使用手册]

    Mac神器 Alfred使用手册http://www.tuicool.com/articles/YJJv2i 配置Cordova环境 1.到nodejs官网下载最新版本,安装pkg文件 2.终端运行 ...

  5. SQL 随机取出一条数据

    今天遇到一需求,需要随机取出一条数据.网上找了下,sqlserver自带的有newID()这个函数,可以随机出来一个guid,用来取随机数还是蛮不错的. 直接上SQL: select top 1 *, ...

  6. Python入门--3--操作符

    一.算数操作符 有:+.-.*././/.%.**(幂) a= 3; a = 3+1; #等同于a += 1  这相当与a加一 同样 也可以-.*././/          需要注意的是//是直接舍 ...

  7. MySql的架构和历史

    1.1.mysql的逻辑架构 架构为如下: 存储引擎:负责数据的储存和提取,供了几十个API供服务层进行调用.各个存储引擎之间不会进行交互,只是供服务层进行调用.事务控制和锁的管理也是在存储引擎里面进 ...

  8. Raft算法详解

    一致性算法Raft详解 背景 熟悉或了解分布性系统的开发者都知道一致性算法的重要性,Paxos一致性算法从90年提出到现在已经有二十几年了,而Paxos流程太过于繁杂实现起来也比较复杂,可能也是以为过 ...

  9. IOS --关于粘贴板 ,剪切板 ,UILabel的复制

    在iOS中下面三个控件,自身就有复制-粘贴的功能: 1.UITextView 2.UITextField 3.UIWebView UIKit framework提供了几个类和协议方便我们在自己的应用程 ...

  10. jmeter - DBC Request之Query Type

    工作中遇到这样一个问题: 需要准备10W条测试数据,利用jmeter中的JDBC Request向数据库中批量插入这些数据(只要主键不重复就可以,利用函数助手中的Random将主键的ID末尾五位数随机 ...