题意简述:给你N和M,对于一个N∗M的单面方格纸你能够对它的每

个个格子黑白染色。然后把方格纸的长边卷起来,卷成一个圆柱体,然后再把

两个短边形成的圆也接起来。形成一个游泳圈的形状(我们染的色仅仅在游泳圈

的外表面)。假设对于两种黑白染色方案。通过卷成这种游泳圈后,是一样

的。则这两种方案也是一样的。给定N,M<=20。求染色方案总数.

分析:

首先我们得会Pólya定理,參见http://wenku.baidu.com/view/bf92a95f804d2b160b4ec0be.html

依据题目的要求,分两种情况:

①若N=M,那么就有翻转0o,90o,180o,270o与上下移动,左右移动共N∗M∗2∗2种置换;

②若N≠M,那么就有翻转0o,180o与上下移动,左右移动共N∗M∗2种置换;

依据Pólya定理,我们分三步:

①暴力搜出全部置换;

②搜出全部置换的循环。

③把答案累加后除以置换数。

时间复杂度:

①O(N∗M)②O(N∗M)

因此总的为O((N∗M)2)

ps.我们须要写高精度。能够预处理2的幂来进行加速。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int MAXN = 29;
const int MAXM = 29;
const int MAXL = 200; int n, m; int G;
bool check_square;
int ex[MAXN*MAXM]; struct bigNum
{
int a[MAXL];
bigNum(){memset(a, 0, sizeof(a));a[0] = 1;}
inline void operator += (const bigNum &add)
{
a[0] = max(a[0], add.a[0]);
for(int i = 1; i <= a[0]; ++i)
{
a[i] += add.a[i];
a[i+1] += a[i]/10;
a[i] %= 10;
}
if(a[a[0]+1]) a[0]++;
}
inline void operator /= (int k)
{
for(int i = a[0]; i > 0; --i)
{
a[i-1] += a[i]%k*10;
a[i] /= k;
}
for(; a[0] > 0; --a[0])
if(a[a[0]]) return ;
}
inline void print()
{
for(int i = a[0]; i > 0; --i)
printf("%d", a[i]);
}
}ans, pow2[MAXN*MAXM]; inline void init()
{
scanf("%d%d", &n, &m);
if(n == m) G = n*m*4, check_square = true;
else G = n*m*2;
for(int i = 1; i <= n*m; ++i)
ex[i] = i;
} inline int calc()
{
int re = 0;
bool hash[MAXN*MAXM] = {false};
for(int i = 1; i <= n*m; ++i)
if(!hash[i])
{
for(int j = i; !hash[j]; j = ex[j])
hash[j] = true;
re++;
}
return re;
} inline void rotate()
{
int nex[MAXN*MAXM] = {0};
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
nex[(m-j)*n+i] = ex[(i-1)*m+j];
for(int i = 1; i <= n*m; ++i) ex[i] = nex[i];
swap(n, m);
} inline void shift_down()
{
int nex[MAXN*MAXM] = {0};
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
nex[(i%n)*m+j] = ex[(i-1)*m+j];
for(int i = 1; i <= n*m; ++i) ex[i] = nex[i];
} inline void shift_right()
{
int nex[MAXN*MAXM] = {0};
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
nex[(i-1)*m+j%m+1] = ex[(i-1)*m+j];
for(int i = 1; i <= n*m; ++i) ex[i] = nex[i];
} inline void work()
{
pow2[0].a[0] = pow2[0].a[1] = 1;
for(int i = 1; i <= n*m; ++i)
{
bigNum tmp = pow2[i-1];
tmp += pow2[i-1];
pow2[i] = tmp;
}
for(int i = 1; i <= n; ++i)
{
for(int j = 1; j <= m; ++j)
{
ans += pow2[calc()];
rotate();
if(check_square) ans += pow2[calc()];
rotate();
ans += pow2[calc()];
rotate();
if(check_square) ans += pow2[calc()];
rotate();
shift_right();
}
shift_down();
}
ans /= G;
} inline void print()
{
ans.print();
puts("");
} int main()
{
init();
work();
print();
return 0;
}

sgu208:Toral Tickets(P&#243;lya定理)的更多相关文章

  1. SGU 208. Toral Tickets

    208. Toral Tickets time limit per test: 0.25 sec. memory limit per test: 65536 KB input: standard ou ...

  2. Pόlya定理-学习笔记

    gi为一个为一个置换 c(g),为c(g)的轮换的数量 (循环的数量) 太监了

  3. Burnside引理与Polya定理

    感觉这两个东西好鬼畜= = ,考场上出了肯定不会qwq.不过还是学一下吧用来装逼也是极好的 群的定义 与下文知识无关.. 给出一个集合$G = \{a, b, c, \dots \}$和集合上的二元运 ...

  4. BZOJ 1004 【HNOI2008】 Cards

    题目链接:Cards 听说这道题是染色问题的入门题,于是就去学了一下\(Bunside\)引理和\(P\acute{o}lya\)定理(其实还是没有懂),回来写这道题. 由于题目中保证"任意 ...

  5. BZOJ1004: [HNOI2008]Cards(Burnside引理 背包dp)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4255  Solved: 2582[Submit][Status][Discuss] Descript ...

  6. 恢复训练(学不动了摸会鱼) Pt. 1

    本来下午想把pre稿子写了,咕咕咕. 群论是啥也不会了,写个polya试试(手动doge)为什么博客媛没有emoji,以后万一自己搭博客一定要加上这个小东西 polya淼题:poj1286 先复吸一下 ...

  7. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  8. Mittag-Leffler定理,Weierstrass因子分解定理和插值定理

    Mittag-Leffler定理    设$D\subset\mathbb C$为区域,而$\{a_{n}\}$为$D$中互不相同且无极限点的点列,那么对于任意给定的一列自然数$\{k_{n}\}$, ...

  9. 【转】Polya定理

    转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...

随机推荐

  1. JQQ文字素材

    1.十二生肖:子鼠.丑牛.寅虎.卯兔.辰龙.巳舍.午马.未羊.申猴.酉鸡.戌狗.亥猪.丙申年(2016)乙未年(2015)甲午年(2014)癸巳年(2013)壬辰年(2012)辛卯年(2011)庚寅年 ...

  2. QT +坐标系统 + 自定义控件 + 对象树的验证(自动进行析构)_内存回收机制

    通过创建一个新的按钮类,来进行析构函数的验证,即对象树概念的验证.当程序结束的时候会自动的调用析构函数, 验证思路: 要验证按钮会不会自动的析构,(即在QPushButton类里面的析构函数添加qDe ...

  3. STL || Gym 101653U Top 25

    一组字符串给出两种排列方式, 求最小分成多少组 如 A     A B     C C    D D    B E    E 则分成3组 A B C D E 即为1 3 1 #include < ...

  4. Android Studio中删除无效的字符串资源

    1.定位到当前项目中的strings.xml文件 1.菜单栏找到"Analyze"->"Run Inspection By Name..."->输入 ...

  5. NodeJs运行服务器-day01

    //读取内置模块http,这个模块开发服务器用的var http =require('http'); var server=http.createServer(function(req,res){ r ...

  6. Openjudge-4151-电影节

    这个题是一道贪心的题目,我们要想看的电影数目最多,我们肯定每次都要选最早结束的电影,这样我们才能去看下一部电影. 它本身最早结束,如果同时开始,那肯定是它的放映时间比较短,如果它后开始,先结束,那它的 ...

  7. 深入Linux内核架构——进程虚拟内存

    逆向映射(reverse mapping)技术有助于从虚拟内存页跟踪到对应的物理内存页: 缺页处理(page fault handling)允许从块设备按需读取数据填充虚拟地址空间. 一.简介 用户虚 ...

  8. 美团技术分享:大众点评App的短视频耗电量优化实战

    美团技术专栏: 关注MAYOU18 前言 美团测试团队负责App的质量保证工作,日常除了App的功能测试以外,还会重点关注App的性能测试.现在大家对手机越来越依赖,而上面各App的耗电量,直接影响了 ...

  9. Uva 11212 编辑书稿(迭代加深搜索)

    题意: 给定N个数的序列, 希望将它排列成1~N, 可以用剪切.粘贴来完成任务, 每次可以剪切一段连续的自然段, 粘贴时按照顺序粘贴. #include <bits/stdc++.h> # ...

  10. 优化子查询sql语句为内连接

    背景: 希望提高查询的效率,从sql语句中频繁出现的子查询入手. 数据表如下:Student表中的CityCode对应于City表中的Code. Student表:                   ...